
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-021-03743-2

1 3

Considerations about learning Word2Vec

Giovanni Di Gennaro1 · Amedeo Buonanno2 · Francesco A. N. Palmieri1

Accepted: 13 March 2021
© The Author(s) 2021

Abstract
Despite the large diffusion and use of embedding generated through Word2Vec,
there are still many open questions about the reasons for its results and about its real
capabilities. In particular, to our knowledge, no author seems to have analysed in
detail how learning may be affected by the various choices of hyperparameters. In
this work, we try to shed some light on various issues focusing on a typical dataset.
It is shown that the learning rate prevents the exact mapping of the co-occurrence
matrix, that Word2Vec is unable to learn syntactic relationships, and that it does
not suffer from the problem of overfitting. Furthermore, through the creation of an
ad-hoc network, it is also shown how it is possible to improve Word2Vec directly
on the analogies, obtaining very high accuracy without damaging the pre-existing
embedding. This analogy-enhanced Word2Vec may be convenient in various NLP
scenarios, but it is used here as an optimal starting point to evaluate the limits of
Word2Vec.

Keywords Word embedding · Natural language processing · Neural networks

1 Introduction

In Natural Language Processing (NLP) problems approached with neural networks,
individual words, that typically belong to large vocabularies, must be transformed
into compressed representations. Although the state-of-the-art of NLP is today

 * Giovanni Di Gennaro
 giovanni.digennaro@unicampania.it

 Amedeo Buonanno
 amedeo.buonanno@enea.it

 Francesco A. N. Palmieri
 francesco.palmieri@unicampania.it

1 Dipartimento di Ingegneria, Università della Campania “Luigi Vanvitelli”, Via Roma, 29,
81031 Aversa, CE, Italy

2 ENEA, Department of Energy Technologies and Renewable Energy Sources, Research Centre
of Portici, P. E. Fermi, 1, Portici, NA, Italy

http://orcid.org/0000-0001-9757-1712
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03743-2&domain=pdf

 G. Di Gennaro et al.

1 3

almost totally based on the use of Transformers [10, 30, 34], the difficulty of train-
ing such structures (both related to computational costs and the need for huge data-
sets) often leads to a preference for different approaches [5, 11, 17, 18, 26] where
each word needs to be individually coded.

In these cases, it is therefore natural to look for codings that account for semantic
relationships between words (what in [33] is called attributional similarity). This
leads to the creation of a so-called word embedding (sometimes named “seman-
tic vector space” or simply “word space”), i.e., a continuous vector space in which
the relationships among the vectors is somehow related to the semantic similarity
of the words they represent. The ways of creating these spaces are almost entirely
based on the distributional hypothesis [14–16, 25], that is, on the idea that contex-
tual information alone is able to define the semantic connections that exist between
individual words.1 Through the use of very large corpora, these models typically
produce vector spaces with hundreds of dimensions to grasp different levels of simi-
larity between words. Similarity proportions such as “Man is to Woman as King is
to Queen” are thus reproducible through vector arithmetic [24], allowing to express
the relationship between words as geometric proximity. For example, the sum vector
obtained from the equation “King” − “Man” + “Woman” returns the vector relative
to “Queen” as the closest neighbor, which is obviously extremely useful in NLP. It
should be noted that, in general, the uniqueness of the vectors is not mathematically
guaranteed but is always supposed to be verified, given the very low probability of
the opposite happening.

Starting from the work in [9], such semantic vector spaces began to be learned
through neural models. To date there are numerous word embedding models (a
fairly complete list is present in [2]), but the main scheme that makes use of neural
networks is known by the name of Word2Vec (W2V) [22, 23]. The production of
a word embedding through W2V can take place in two different ways: Continuous
Bag-of-Words (CBOW) and Skip-Gram (SG). The two approaches rely on different
management of the input and the output variables, but basically use the same struc-
ture of the network. In the following, we will focus only on the SG approach, which
is the most used in practice and studied in the literature [3, 19, 21]. The success of
this structure is undoubtedly linked to its performance which on the task of analo-
gies proves better than both classic techniques, such as Singular Value Decomposi-
tion (SVD) [19, 20] and Latent Semantic Analysis (LSA) [3, 4], and modern count-
based methods, such as GloVe [20, 27, 29].

Although many authors have tested Word2Vec on analogies [13, 19–21, 24, 28],
rarely enough attention has been given to the modalities in which such embeddings
are obtained. In this work, we try to shed light on the performance of W2V as the
number of epochs changes, showing how the particular behavior of the learning rate
justifies an individual analysis of the single epochs. This innovative way of pro-
ceeding highlights elements of extreme interest, including: the inability of W2V to
learn syntactic, the absence of overfitting and the stabilization of learning around

1 For this reason, in computational linguistics it is preferred to use the term “distributional semantic
models” [6, 7], or generically “distributed representation”.

1 3

Considerations about learning Word2Vec

a maximum value. Finally, it is shown how to improve W2V through an ad-hoc
training directly on the analogies, achieving high accuracy by introducing very few
adjustments to a pre-trained embedding. This process highlights the limitations of
Word2Vec, demonstrating that it is insensitive to better starting conditions.

In Sect. 2, the details of W2V are introduced, in Sect. 3, the elements that emerge
from the tests performed are examined, in Sect. 4, the analogy-enhanced version of
W2V is shown. Conclusions and comments are included in Sect. 5.

2 Word2Vec

Given a vocabulary V = {w1,w2,… ,wV} , the W2V SG structure (Fig. 1) derives
from a two-layer neural network with linear activation (identity) in the hidden layer
and no bias, mathematically expressed2 as:

where H ∈ ℝ
V×M , Z ∈ ℝ

M×V , ���i is the V-dimensional one-hot row vector relative to
the generic word wi at the input of the neural network, hhhi ∈ ℝ

M is its related embed-
ding, ���i ∈ ℝ

V is the linear combination before the activation functions, and yyyi ∈ ℝ
V

is the network output after the activation function �(⋅) . The dimensions of the input
and output layer of this network are therefore the same and equal to the size of the
vocabulary V = |V| , while the size M of the hidden layer represents a hyperparam-
eter chosen arbitrarily to be much smaller than V. Figure 1 shows the architecture
with two different activation functions that will be discussed later.

2.1 The vocabulary

W2V training starts from a natural language text corpus C consisting of a
sequence of |C| words (w[k])k∈K , with K = {1, 2,… , |C|} , where each distinct word

(1)hhhi = ���iH, ���i = ���iHZ, yyyi = �(���iHZ)
...

S
O
F
T
M
A
X

...

(a)

...

(b)

Fig. 1 SG architecture with two activation functions: a softmax, b sigmoid

2 We will follow the classic convention that uses bold to represent vectors, so that their components are
more easily distinguishable.

 G. Di Gennaro et al.

1 3

w appears throughout C a number of times equal to �(w) . The original corpus C is
pre-processed to produce a smaller reference corpus C̃ , from which all the words
that occur less than T times are eliminated:

This pre-processing removes writing errors, or words that are too rare to be consid-
ered in the embedding. Then the distinct words that belong to the reference corpus C̃
constitute the vocabulary V , for which the empirical probability is:

2.2 Learning the embedding

According to a criterion that will be specified in the following, the training of the
network requires a set of input/output (i, o) ordered pairs P = {(wi[�],wo[�])} ,
generated in advance from the reference corpus C̃ . Every single pair of words
(wi,wo) is associated with its relative one-hot vectors (���i,���o) that represent,
respectively, the input and desired output of the network. Training takes place
through a classic stochastic gradient descent (SGD) algorithm with instantaneous
categorical cross-entropy loss and gradient:

where �o
j
 , yi

j
 and �i

j
 represent the j-th element of the vectors ���o , yyyi and ���i , respectively,

and when at the network output there is a softmax activation function (Fig. 1a). Note
that �i

o
 denotes the component of ���i corresponding to the non null element of ���o.

Since the use of pure softmax at the output layer would represent an exces-
sive computational cost (as the network, although simple, has a decidedly large
number of parameters due principally to the dimension of the vocabulary V), the
typical alternatives fall either on adopting an approximation of it (called “hierar-
chical softmax”, and which we will not discuss here), or resorting to a technique
known as “negative sampling” [23]. In this case, the network is modified to the
architecture of Fig. 1b, which has sigmoid activation function on each neuron of
the output layer. The computational cost is reduced by backpropagating only N
randomly chosen errors of the V − 1 ones, relating to the output words wn that do
not correspond with the word wo present in the single pair (i.e., n ≠ o). The nega-
tive sampling then turns the problem into a multi-label classification one, where
the instantaneous binary cross-entropy loss and its gradient are:

(2)w ∈ C̃ ⟺ �(w) ≥ T

(3)P(wj) =
�(wj)∑V

l=1
�(wl)

, j = 1,… ,V .

(4)
�io = −

∑V

j=1
�o
j
ln yi

j

= − ln

�
exp(�i

o
)∑V

j=1
exp(�i

j
)

�
;

⎧⎪⎨⎪⎩

��io

��i
o

=

�
exp(�i

o
)∑V

j=1
exp(�i

j
)
− 1

�

��io

��i
n

����n≠o =
exp(�i

n
)∑V

j=1
exp(�i

j
)

1 3

Considerations about learning Word2Vec

The N random words of Eq. (5), that act as “negative” set for that single training
pair, are sampled from the heuristically modified “unigram distribution” of the
words in the corpus C̃ [24]:

2.3 Pairs generation

Since the presence of common words (such as “the”, “of”, etc.) is very high in regu-
lar texts, a classic problem in creating a set of training pairs lies in making sure that
they are not considered too often [23]. To achieve this, W2V modifies the true word
empirical probability by defining a “keeping probability” as:

where � is a heuristically-determined value, typically set between 10−3 and 10−5 (in
the following we take it equal to 10−5). The nonlinear transformation (7) is highly
peaked around small probability values and reduces the effect of very frequent
words. Each single word w of the corpus is then analysed using the following pro-
cedure: take a uniformly distributed random values r ∼ U(0,1) , i.e., extracted accord-
ing to a uniform distribution in [0, 1], if r < Pkeep(w) the word becomes a “central
word”, otherwise is discarded.

The corpus C̃ is also divided into sentences (each containing at most a maximum
number of words). Once a central word has been chosen, two windows of words are
built within the sentence: one towards its right and the other one towards its left. The
words that belong to these windows constitute the “context words” for that central
word. The window size is not fixed but varies dynamically and randomly on each
epoch and for each central word considered, according to a uniform distribution in
[1, W] (with W hyperparameter defined at the beginning) [22]. In this way, the words
closer to the central words are considered more times but also words further away
are too. Also note that, being limited by the extremes of the sentence, the two win-
dows do not always have the same size. Finally, each central word is associated with

(5)

L
io = − ln yi

o
−
∑N

j=1
ln(1 − yi

nj
)
��� nj ≠ o

nj ∼ Pneg(w
nj)

= − ln
�

1

1+exp(−�i
o
)

�

−
∑N

j=1
ln

�
1

1+exp(�i
nj
)

������ nj ≠ o

nj ∼ Pneg(w
nj)

;

⎧
⎪⎨⎪⎩

�Lio

��i
o

=
−1

1+exp(�i
o
)

�Lio

��i
nj

=
1

1+exp
�
−�i

nj

�

(6)Pneg(w
n) =

�(wn)3∕4∑V

j=1
�(wj)3∕4

.

(7)Pkeep(w
n) =

⎛⎜⎜⎝

�
P(wn)

�
+ 1

⎞⎟⎟⎠
�

P(wn)

 G. Di Gennaro et al.

1 3

each of the words in its context to generate the training pairs. For each pair, the cen-
tral word represents the input while the context word the output.

2.4 Word embedding evaluation

The main problem after having obtained a word embedding is precisely how to test
it. Unfortunately, semantic proximity is indeed difficult to prove, and probably all
tests (whether extrinsic and intrinsic [32]) prove arbitrary or subjective in evaluat-
ing this property. The use of analogies, however, has been a standard approach for
some time [13, 19–21, 24, 28], although it should be noted that they are certainly not
perfect. For example, if we consider the semantic proportion “Athens is to Greece as
Tehran is to...” (and although the correct answer is undoubtedly “Iran”) it is hard to
assess whether or not the possible answer “Persia” should be declared as an error.
Natural language is in fact usually highly polarized, as it also depends on socio-
cultural influences. However, the use of triads of words certainly makes the search
field of the desired more limited than all other possible tests, making it one of the
most important tests in this field.

In the present study, we use the most common test set of analogies, known as
Google Set and included in the original distribution of the W2V package [22].

It consists of 19,544 analogies divided into 14 categories, typically grouped into
“semantic” (5 categories with 8869 analogies) and “syntactic” (9 categories with
10,675 analogies) macro-areas; an example table is presented in [22]. Each of the
analogies in this dataset can be written symbolically as:

where typically the word wb⋆ is chosen as the test target. For example, if we have:
“Man: Woman = King: Queen”, with wa (Man), wa⋆ (Woman) and wb (King), we
expect to fill-in the answer with wb⋆ (Queen). In all the tests performed, however, it
was decided to totally neglect all the analogies that contain one or more words not
present in the vocabulary.3 Nevertheless it is good to specify that, since the goal of
this work is not to compare different models, this choice is completely irrelevant
from our point of view.

Following previous works [13, 21, 24], to provide the answer for the single anal-
ogy we use the “classical” cosine distance, also known as 3CosAdd [19]. The cosine
distance has the advantage of not excessively weighing the amount of contributions
obtained from the backpropagation of the gradient during the training phase, which
can lead to excess increase or decrease of the single vector norm. In this way, the bal-
ance achieved with respect to the other vectors present is mainly considered. More
specifically (assuming the following relations: wa

→ ���a → hhha , wa⋆
→ 𝛿𝛿𝛿a

⋆

→ hhha
⋆ ,

wb
→ ���b → hhhb), the answer will be the word whose index is:

(8)wa ∶ wa⋆ = wb ∶ wb⋆

3 In practice, the use of Text8 for model training (as described below) therefore reduces the initial set of
analogies to 17,827 (of which 7416 semantic and 10,411 syntactic).

1 3

Considerations about learning Word2Vec

where the set He is the collection of all the embeddings except hhha , hhha⋆ and hhhb . In
the network of Fig. 1, this corresponds to an amended embedding matrix:

where 111 is the V-dimensional all-ones vector, and 𝛿𝛿𝛿s = 𝛿𝛿𝛿b + 𝛿𝛿𝛿a + 𝛿𝛿𝛿a
⋆ . By eliminat-

ing the rows relating to the words of the analogy used in the first part, the amended
matrix He reflects the classic attitude that seeks the solution in the word space from
which the words used in the sum have been excluded. Note that this also implicitly
imposes that all analogies are constructed so that the searched word is never con-
tained in the triad used in the query.

Matrix H can also be normalized by row in advance, generating a new matrix
Ĥ that now contains all normalized embedding ĥhh . This preventive normalization
allows to calculate the cosine distances through simple scalar products, since (by
setting Ĥe = diag (111 − ���s)Ĥ and ĥhh

s

= ĥhh
b

− ĥhh
a

+ ĥhh
a
⋆

) it is possible to observe that:

As typical, if the maximum of ĥhh
s�H⊤

e
 is in the b⋆ index, i.e., in the index position of

the word wb⋆ , the response of the network is considered correct (increasing the accu-
racy), otherwise it is considered incorrect.

3 The importance of learning time

In this paper, we focus on various issues related to the results obtained from training
W2V. In our experience, also in obtaining W2V for the Italian language [12] and in
its usage [11], we found that some important choices have become so common that
they are used almost mechanically, without questioning about their effectiveness.
More specifically, what is the correct number of epochs that need to be used before
we can declare an embedding satisfactory? What is the role of the learning rate?
More importantly: what is the effect of these choices when performances are studied
in comparison for both accuracy and loss?

In fact, regardless of corpus used (which certainly impacts strongly on the qual-
ity of the generated embedding), no one seems to have ever bothered to analyse the
behavior of the W2V as the number of epochs varies, sometimes making compari-
sons with other word embedding methods without even reporting this parameter [7,
13, 19–21, 24, 28, 32]. Our goal is therefore precisely to fill this gap, observing the
behavior of the embending in the different epochs as the training hyperparameters
vary.

(9)argmax
hhhj∈He

cos(hhhj,hhhs) with

⎧
⎪⎨⎪⎩

cos(𝛼𝛼𝛼,𝛽𝛽𝛽) =
𝛼𝛼𝛼𝛽𝛽𝛽⊤

‖𝛼𝛼𝛼‖‖𝛽𝛽𝛽‖
hhhs =

hhhb

‖hhhb‖ −
hhha

‖hhha‖ +
hhha

⋆

‖hhha⋆‖

(10)He = diag (111 − ���s)H

(11)argmax

ĥhh
j
∈ Ĥe

cos(ĥhh
j
, ĥhh

s
) = argmax ĥhh

s�H⊤
e

 G. Di Gennaro et al.

1 3

We describe here our experience on several simulations applied to the classic
Text8 corpus, composed of the first 100 MB of cleaned text of the English Wikipe-
dia dump of Mar. 3, 2006. From this corpus, all the words repeated less than T = 5
times have been removed, thus obtaining a vocabulary composed of V = 71,290
words. Although much larger corpora are usually used for more recent W2V embed-
ding [1, 12], we chose this one because we consider it sufficiently typical for focus-
ing on the issues outlined above.4 On the other hand, the aim of this study is pri-
marily to highlight the relationships that exist between the different results. Since
the modification related to the change of the hyperparameters is substantially linked
to the training methods, the relationships between them can be rightly considered
independent from the corpus (to which only a modification of the absolute accuracy
values, which are secondary here, will be linked).

3.1 Learning rate

The first important consideration to make, also to better understand the tests per-
formed later, concerns the learning rate. A typical W2V training using the SGD is
in fact based on a variable learning rate, where a starting value (generally in the
order of 10−2) and a final value (generally in the order of 10−4) are defined with a
step size decaying linearly as a function of the number of epochs used. This classical
machine learning technique [8, 31] should aim to decrease the loss, allowing a better
approach to the minimum compared to a fixed learning rate.

Figure 2a shows the behavior of the average loss, with a linear and a fixed rate, as
the number of epochs progresses. Note that already after a few epochs, and contrary
to what one would expect, the fixed rate (here 10−2) finds a better minimum than a
typically used degrowth rate (here from 10−2 to 10−4). This may be due to the highly
non-convex nature of the cost function, which should therefore lead to preferring a
different choice from the one commonly used.

1,7

1,9

2,1

2,3

2,5

2,7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Epochs

Average Loss

Linear Fixed

(a)

0%
5%

10%
15%
20%
25%
30%
35%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Epochs

Accuracy

Linear Fixed

(b)

Fig. 2 Comparison between loss and accuracy in relation to the choice of the learning rate

4 This corpus is commonly used for W2V training and is composed of a sufficiently large number of
words (17,005,208 words), but above all it is “typical” in the sense that the internal structure (phrases
extracted from Wikipedia) is of the same type as most usable corpora.

1 3

Considerations about learning Word2Vec

The surprising result on the analogy test set shown on Fig. 2b is that exactly the
opposite happens with respect to the loss function: a substantial increase in the accu-
racy (from 27.3 to 32.2%) is obtained for the variable learning rate.

Our interpretation of the results is that W2V maximizes accuracy not only by
minimizing the loss function (which means mapping the co-occurrence matrix in
the best possible way), but also by trying to reduce the link between words and their
distribution as the connection between them increases. Probably, the linear decrease
of the learning rate allows to fix the rarer words within the embedding space, giv-
ing them a more and more reduced possibility of movement; because the second
matrix Z is gradually less “conditioned” by these words. In addition to minimizing
the loss, the use of many epochs is therefore also necessary to make the learning rate
decrease smoother, allowing a gradual stop of the movement of vectors within the
embedding space.

3.2 Simulations and comparisons between hyperparameters

In order to understand what happens when the number of epochs changes, you can-
not therefore simply train W2V over a large number of epochs and see how the
training proceeds at each step. In fact, in order to have a correct computation of the
decreasing learning rate for the current trial, we must ensure that the learning rate
reaches its minimum.

Using this different way of looking at learning outcomes over different epochs,
extremely interesting behaviors (never been highlighted before, to our knowledge)
are observed. Each test presented below, therefore, was performed respecting this
rule, and the results were averaged over more simulations.5 In addition, the tests
shown were performed avoiding to parallelize the code within the single epoch,6
since the SGD would strictly not allow parallelization and an attempt was made to
avoid possible influences of uncontrollable elements.

Fig. 3 Tests with
� = 0.025 ÷ 0.0001 , N = 5 ,
W = 5 and M = 300

15%
20%
25%
30%
35%
40%
45%
50%

10 20 40 60 80 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

Epochs

Standard configura�on

Seman�c Syntac�c Total

5 In particular, every single point of every single graph (relative to every single epoch shown) was per-
formed for at least 20 times.
6 However, the code was parallelized on different processors for different epochs (which are considered
independent of each other).

 G. Di Gennaro et al.

1 3

Following this way, Fig. 3 shows the trend of a W2V training with: learning
rate � from 0.025 to 0.0001, negative samples N = 5 , maximum window W = 5
and embedding size M = 300 . The analogies used for the accuracy test have been
divided into the two categories syntactic and semantic as described in Sect. 2.4. The
graph reports the average percentages on the two categories, so that the incidence
is assessed regardless of the absolute number of elements present in each category.

From the curves, it can be observed that, relating to the syntactic part, the qual-
ity of the embedding is essentially independent from the number of epochs. This
element is also present in all the other simulations and highlights an extremely
important fact: W2V does not seem to be able to learn syntactic. This means that
the various comparisons between W2V and different word embeddings cannot take
into consideration datasets mainly based on syntactic, because this would induce a
significant bias in the evaluation of the results.

Furthermore, W2V does not really seem to go overfitting, as in fact the trend on
the test set does not decrease but stabilizes. This means that there is a “saturation”
value for learning W2V which should always be reached in order to perform a cor-
rect comparison with any other possible word embedding method.

3.2.1 Negative sampling

The results of other tests for different choices of the parameter for negative sampling
(N = 2, 5, 10, 15) are shown in Fig. 4a. It can be observed that, except for a few
epochs with larger values, as the epochs progress, the various configurations tend
to be almost identical (especially beyond 300 epochs). Moreover, the speed of con-
vergence to the steady state value for values N > 10 does not seem to undergo vari-
ations, allowing this choice to be relaxed (for example for computational reasons).

3.2.2 Size of the embedding space

In Fig. 4b, a comparison with variable size of the embedding space is reported
(M = 100, 200, 300, 500). The results quite clearly reveal how the quality of embed-
ding is very tied to its size.

The peculiarity, however, is that the achievement of better performances under
the semantic profile (reached with dimensions approximately equal to the square

15%
20%
25%
30%
35%
40%
45%
50%

10 20 40 60 80 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

Epochs

Nega�ve Comparison

SEM.NEG=2 SEM.NEG=5 SEM.NEG=10 SEM.NEG=15

SYN.NEG=2 SYN.NEG=5 SYN.NEG=10 SYN.NEG=15

(a)

15%
20%
25%
30%
35%
40%
45%
50%

10 20 40 60 80 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

Epochs

Size Comparison

SEM.SIZ=100 SEM.SIZ=200 SEM.SIZ=300 SEM.SIZ=500

SYN.SIZ=100 SYN.SIZ=200 SYN.SIZ=300 SYN.SIZ=500

(b)

Fig. 4 Tests by varying a single element of the standard configuration

1 3

Considerations about learning Word2Vec

root of the vocabulary) does not coincide with the performance of the syntactic part,
which is always worse. This shows how the accuracy of the syntactic part is actu-
ally determined only by the compression level of the intermediate space, confirming
even more how the W2V training is not able to condition it. It should be noted that
a larger space makes things worse from every point of view, probably because this
makes the network able to better map the matrix of co-occurrences (paradoxically
managing to reduce the loss better).

3.2.3 Window size

On the other hand, the change in the window size between small values (from 2 to
5), shown in Fig. 5a, seems to be of little importance. In fact, neglecting window
size 2, which in 50% of cases involves a single word to the right and left (show-
ing a clear inability to approach the performance of the other windows), it can be
observed that small differences on small windows tends, at increasing epochs, to
converge towards similar accuracy.

Different is the case of the results reported in Fig. 5b, and obtained for large win-
dow sizes (W = 5, 10, 15, 20). Here, in fact, a fixed (and sufficiently large) size incre-
ment for the window leads, in steady state conditions, to an equally rigid increase
in performance; which are translated upwards both as regards the semantic and the
syntactic part (albeit in a reduced way).

Larger windows also tend more rapidly to high accuracy, almost contradicting the
distributional hypothesis. In reality, remembering the paragraph Sect. 2.3 and given
a window of size m, the probability of forming a pair for a word placed at a distance
of d words from the considered one, turns out to be equal to:

and therefore the increase in the size m of the window also increases the probability
of the closest words to form a pair with it. It seems to underlie the need for a Gauss-
ian window, which weighs more the neighboring words. Nevertheless, the use of a
larger maximum window W also leads to the creation of a larger training dataset,
which allows to find a better connection between words.

(12)p =
m − d + 1

m

15%
20%
25%
30%
35%
40%
45%
50%

10 20 40 60 80 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

Epochs

Small Window Comparison

SEM.WIN=2 SEM.WIN=3 SEM.WIN=4 SEM.WIN=5

SYN.WIN=2 SYN.WIN=3 SYN.WIN=4 SYN.WIN=5

(a)

15%
20%
25%
30%
35%
40%
45%
50%

10 20 40 60 80 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

Epochs

Big Window Comparison

SEM.WIN=5 SEM.WIN=10 SEM.WIN=15 SEM.WIN=20

SYN.WIN=5 SYN.WIN=10 SYN.WIN=15 SYN.WIN=20

(b)

Fig. 5 Tests of a 300-dimensional space when the window changes

 G. Di Gennaro et al.

1 3

This could also be the reason for the improvement of the accuracy on the syn-
tactic part, which is probably only linked to the relationship between the pairs to be
mapped and the space available.

Finally, the “positive” conditioning of a very common distant word will certainly
be canceled by the many “negative” conditioning that will occur, while the less com-
mon words will create exceptions, fortifying connections even if placed at a greater
distance. In fact, it should be noted that a typical W2V training (mainly to avoid
high computational costs) does not consider shuffling all the training pairs, but at the
most it mixes sentences. In other words, SGD training on the word pairs often takes
place in the order in which the words occur within the sentence, and therefore even
if a distant word falls within the window it would also be conditioned by the words
between them.

4 Analogy‑enhanced Word2Vec

In this section, we report the results on training W2V directly on analogies. The
structure used (shown in Fig. 6) reflects the test phase through a neural network with
linear activation (identity) in the hidden layer, but adding a softmax activation at the
output. Note how the connections have been amended. The softmax function tends
to focus the backpropagated gradient mainly on the vectors “closest” to the vector of
interest, while modifying the other vectors (which however produce some relevance)
as little as possible.

The loss is calculated through the cross-entropy function � (Eq. 4) and assuming
that the desired output is the one-hot vector 𝛿𝛿𝛿b⋆ relative to the fourth word wb⋆:

Due to the relatively few analogies present, training of the W2V cannot be based
solely on them. Therefore, the starting matrix is taken from an already trained net-
work on 40 epochs, with standard configuration parameters.

Further training on analogies was performed for only 15 epochs, using a
subset of 20% of them with a fixed learning rate � equal to 0.01 and normal-
izing all the vectors at the beginning of each training step (i.e., at each matrix

(13)�H = �H − 𝜂
𝜕�

𝜕�H
= �H + 𝜂

⎛⎜⎜⎝
𝛿𝛿𝛿b

⋆

−
exp(𝜐𝜐𝜐s)∑V

j=1
exp(𝜐s

j
)

⎞⎟⎟⎠

⊤

ĥ̂ĥhs

Fig. 6 Network scheme used for
training on the analogies ...

...
...

...

...
...

...
...

S
O
F
T
M
A
X

...

...
...

...
...

1 3

Considerations about learning Word2Vec

modification). Although the analogies are randomly permuted before being cho-
sen, even such a simple configuration leads to results around 97% of accuracy on
the whole set. This result is however conditioned by the structure of the dataset,
which always uses the same words and permutes them within the various analo-
gies. Despite this, it is important to note that at the end of this training process
only about 450 vectors relating to the searched words undergo an angle shift,
while all the other vectors, remain practically immobile. In other words, the net-
work better positions only the vectors that do not provide the correct solution,
and the fact of having amended the output matrix allows this shift to be made by
fixing the other three points in space.

This indicates that the analogies present in the test set are well characterized
by embedding, and although the solution does not appear in the first position, it
is still represented (in most cases) in the top ones. The embedding generated by
this structure can therefore certainly be used as a better basis (since the analo-
gies themselves characterize its goodness) for subsequent NLP problems, espe-
cially if the number and variety of analogies are increased.

In this case, however, the interest in using this network to generate better
embedding is related solely to highlighting the limits of W2V.

One might actually expect that, given the relatively low number of modified
vectors and the better position of the vectors obtained (relatively to the analo-
gies), another embedding training (through the classic W2V scheme) will not
excessively alter the advantages introduced by the second training. Instead, even
if you set the learning rate to a very low value (� = 10−4) and lock H by training
Z alone for a certain number of epochs (in order to adapt the second part to the
changes introduced in the first), further training gradually destroys all the advan-
tages obtained (Fig. 7).

This attitude confirms that the W2V methodology always leads to a point of
stability that depends on the dataset used, and that therefore the choice of a bet-
ter starting point is not able to improve the final solution. On the other hand, the
function that W2V tries to minimize is not very connected to the analogy test,
which basically leads it not to recognize a better situation from that point of
view.

Fig. 7 Accuracy trend following
an improvement in embedding

20%
30%
40%
50%
60%
70%
80%
90%

100%

1 50 100 150 200 250 300 350 400 450 500

Epochs

Accuracy

Seman�c Syntac�c Total

 G. Di Gennaro et al.

1 3

5 Conclusions

In this work, we have analysed Word2Vec in the Skip-gram mode looking at dif-
ferent issues related to learning. Through a careful analysis, it has been noted that
the model demonstrates better performance on the analogies mainly through the
relationship it creates by contrasting the minimization of the loss function. The
way in which the learning rate descends at each epoch, which goes in an oppo-
site direction with respect to the classic objective of minimizing the loss, seems
in fact to be fundamental in ensuring the creation of relationships between word
vectors. This led to training the model by evaluating each epoch independently, in
order to observe the results without being conditioned by the learning rate. The
observation of learning as the number of epochs increases has also clearly shown
that Word2Vec is unable to learn syntactic relationships, which instead seem to
be mainly due to the link between the size of the training set and the available
space. Furthermore, the quality of the embedding on the test set stabilizes on a
maximum value, which therefore (regardless of computational and memory costs)
should always be achieved if W2V is to be assessed against other methodologies.

We have also shown in our analysis how the various hyperparameters influ-
ence learning differently. The trend with varying negative sampling, for example,
represents a further reason for the benefit of training over many epochs. Similarly,
the analysis of the window size has shown that performance improves for higher
values, and this happens even if the training is performed for a few epochs (com-
pensating in some way the cost). On the contrary, the choice of the embedding
size requires extreme care since a significant reduction in performance is due to
both too small and too large embedding.

Finally, we have proposed to further train a given embedding directly on analo-
gies. The use of an adequate structure, in fact, allows to obtain performances in
the order of 97% by modifying only a few vectors. Changing only some vectors
could result in better “semantic” embedding, which could be used as a basis for
the resolution of further NLP problems. In any case, through this better solution,
it is shown how W2V cannot maintain the advantage obtained. That is, the struc-
ture of W2V proves to be extremely dependent on the corpus, making semantic
proximity only a side effect of its true objective function.

Funding Open access funding provided by Università degli Studi della Campania Luigi Vanvitelli within
the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Considerations about learning Word2Vec

References

 1. Al-Matham RN, Al-Khalifa HS (2021) Synoextractor: a novel pipeline for Arabic synonym
extraction using Word2Vec word embeddings. Complexity. https:// doi. org/ 10. 1155/ 2021/ 66274
34

 2. Almeida F, Xexéo G (2019) Word embeddings: a survey. arXiv: 1901. 09069
 3. Altszyler E, Sigman M, Fernández Slezak D (2016) Comparative study of LSA versus Word2Vec

embeddings in small corpora: a case study in dreams database. arXiv: 1610. 01520
 4. Altszyler E, Ribeiro S, Sigman M, Fernández Slezak D (2017) The interpretation of dream

meaning: resolving ambiguity using latent semantic analysis in a small corpus of text. Conscious
Cognit. https:// doi. org/ 10. 1016/j. concog. 2017. 09. 004

 5. Balaneshin-Kordan S, Kotov A (2018) Deep neural architecture for multi-modal retrieval based
on joint embedding space for text and images. In: Proceedings of the 11th ACM International
Conference on Web Search and Data Mining, Association for Computing Machinery, New York,
NY, USA, WSDM’18, pp 28–36. https:// doi. org/ 10. 1145/ 31596 52. 31597 35

 6. Baroni M, Lenci A (2010) Distributional memory: a general framework for corpus-based semantics.
Comput Ling 36:673–721. https:// doi. org/ 10. 1162/ coli_a_ 00016

 7. Baroni M, Dinu G, Kruszewski G (2014) Don’t count, predict! a systematic comparison of context-
counting versus context-predicting semantic vectors. In: 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014—Proceedings of the Conference, vol 1, pp 238–247.
https:// doi. org/ 10. 3115/ v1/ P14- 1023

 8. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In:
Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol 7700. Springer, Ber-
lin. https:// doi. org/ 10. 1007/ 978-3- 642- 35289-8_ 26

 9. Bengio Y, Ducharme R, Vincent P (2000) A neural probabilistic language model. J Mach Learn Res
3:932–938. https:// doi. org/ 10. 1162/ 15324 43033 22533 223

 10. Devlin J, Chang MW, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transform-
ers for language understanding. arXiv: 1810. 04805

 11. Di Gennaro G, Buonanno A, Di Girolamo A, Ospedale A, Palmieri FAN (2021a) Intent classifica-
tion in question-answering using LSTM architectures. In: Progresses in Artificial Intelligence and
Neural Systems, Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://
doi. org/ 10. 1007/ 978- 981- 15- 5093-5_ 11

 12. Di Gennaro G, Buonanno A, Di Girolamo A, Ospedale A, Palmieri FAN, Fedele G (2021b) An
analysis of Word2Vec for the Italian language. In: Progresses in Artificial Intelligence and Neural
Systems, Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https:// doi.
org/ 10. 1007/ 978- 981- 15- 5093-5_ 13

 13. Finley G, Farmer S, Pakhomov S (2017) What analogies reveal about word vectors and their com-
positionality. In: *SEM 2017—6th Joint Conference on Lexical and Computational Semantics, pp
1–11. https:// doi. org/ 10. 18653/ v1/ S17- 1001

 14. Firth JR (1957) A synopsis of linguistic theory 1930–55. Stud Ling Anal (Spec Vol Philol Soc)
1952–59:1–32

 15. Gries S (2014) Frequency tables: tests, effect sizes, and explorations. In: Glynn D, Robinson JA
(eds) Corpus Methods for Semantics Quantitative Studies in Polysemy and Synonymy, pp 365–389.
https:// doi. org/ 10. 1075/ hcp. 43. 14gri

 16. Harris ZS (1954) Distributional structure. WORD 10(2–3):146–162. https:// doi. org/ 10. 1080/ 00437
956. 1954. 11659 520

 17. Jang B, Kim I, Kim JW (2019) Word2vec convolutional neural networks for classification of news
articles and tweets. PLoS ONE 14(8):1–20. https:// doi. org/ 10. 1371/ journ al. pone. 02209 76

 18. Jianqiang Z, Xiaolin G, Xuejun Z (2018) Deep convolution neural networks for twitter sentiment
analysis. IEEE Access 6:23253–23260. https:// doi. org/ 10. 1109/ ACCESS. 2017. 27769 30

 19. Levy O, Goldberg Y (2014) Neural word embedding as implicit matrix factorization. Adv Neural
Inf Process Syst 3:2177–2185

 20. Levy O, Goldberg Y, Dagan I (2015) Improving distributional similarity with lessons learned from
word embeddings. Trans Assoc Comput Ling 3:211–225. https:// doi. org/ 10. 1162/ tacl_a_ 00134

 21. Linzen T (2016) Issues in evaluating semantic spaces using word analogies. In: Proceedings of
Evaluating Vector-Space Representations for NLP Workshop, pp 13–18. https:// doi. org/ 10. 18653/
v1/ W16- 2503

https://doi.org/10.1155/2021/6627434
https://doi.org/10.1155/2021/6627434
http://arxiv.org/abs/1901.09069
http://arxiv.org/abs/abs/1610.01520
https://doi.org/10.1016/j.concog.2017.09.004
https://doi.org/10.1145/3159652.3159735
https://doi.org/10.1162/coli_a_00016
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1162/153244303322533223
http://arxiv.org/abs/abs/1810.04805
https://doi.org/10.1007/978-981-15-5093-5_11
https://doi.org/10.1007/978-981-15-5093-5_11
https://doi.org/10.1007/978-981-15-5093-5_13
https://doi.org/10.1007/978-981-15-5093-5_13
https://doi.org/10.18653/v1/S17-1001
https://doi.org/10.1075/hcp.43.14gri
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1371/journal.pone.0220976
https://doi.org/10.1109/ACCESS.2017.2776930
https://doi.org/10.1162/tacl_a_00134
https://doi.org/10.18653/v1/W16-2503
https://doi.org/10.18653/v1/W16-2503

 G. Di Gennaro et al.

1 3

 22. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector
space. In: Proceedings of ICLR Workshop 2013

 23. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and
phrases and their compositionality. Adv Neural Inf Process Syst 26:1

 24. Mikolov T, Yih WT, Zweig G (2013) Linguistic regularities in continuous space word representa-
tions. In: Proceedings of NAACL-HLT Workshop, pp 746–751

 25. Miller GA, Charles WG (1991) Contextual correlates of semantic similarity. Lang Cogn Process
6(1):1–28. https:// doi. org/ 10. 1080/ 01690 96910 84069 36

 26. Muhammad PF, Kusumaningrum R, Wibowo A (2021) Sentiment analysis using Word2Vec and
long short-term memory (LSTM) for Indonesian hotel reviews. Proc Comput Sci 179:728–735, 5th
International Conference on Computer Science and Computational Intelligence 2020. https:// doi.
org/ 10. 1016/j. procs. 2021. 01. 061

 27. Naili M, Habacha A, Ben Ghezala H (2017) Comparative study of word embedding methods in
topic segmentation. Proc Comput Sci 112:340–349. https:// doi. org/ 10. 1016/j. procs. 2017. 08. 009

 28. Nicolai G, Cherry C, Kondrak G (2015) Morpho-syntactic regularities in continuous word represen-
tations: a multilingual study. In: Proceedings of the NAACL-HLT Workshop, pp 129–134. https://
doi. org/ 10. 3115/ v1/ W15- 1518

 29. Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation, vol 14, pp
1532–1543. https:// doi. org/ 10. 3115/ v1/ D14- 1162

 30. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsuper-
vised multitask learners. In: OpenAi

 31. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv: 1609. 04747
 32. Schnabel T, Labutov I, Mimno D, Joachims T (2015) Evaluation methods for unsupervised word

embeddings. In: Proceedings of Empirical Methods in Natural Language Conference, pp 298–307.
https:// doi. org/ 10. 18653/ v1/ D15- 1036

 33. Turney P (2006) Similarity of semantic relations. Comput Ling 32:379–416. https:// doi. org/ 10.
1162/ coli. 2006. 32.3. 379

 34. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017)
Attention is all you need. arXiv: 1706. 03762

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1080/01690969108406936
https://doi.org/10.1016/j.procs.2021.01.061
https://doi.org/10.1016/j.procs.2021.01.061
https://doi.org/10.1016/j.procs.2017.08.009
https://doi.org/10.3115/v1/W15-1518
https://doi.org/10.3115/v1/W15-1518
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/abs/1609.04747
https://doi.org/10.18653/v1/D15-1036
https://doi.org/10.1162/coli.2006.32.3.379
https://doi.org/10.1162/coli.2006.32.3.379
http://arxiv.org/abs/abs/1706.03762

	Considerations about learning Word2Vec
	Abstract
	1 Introduction
	2 Word2Vec
	2.1 The vocabulary
	2.2 Learning the embedding
	2.3 Pairs generation
	2.4 Word embedding evaluation

	3 The importance of learning time
	3.1 Learning rate
	3.2 Simulations and comparisons between hyperparameters
	3.2.1 Negative sampling
	3.2.2 Size of the embedding space
	3.2.3 Window size

	4 Analogy-enhanced Word2Vec
	5 Conclusions
	References

