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ABSTRACT The use of estimation techniques on stochastic models to solve control problems is an
emerging paradigm that falls under the rubric of Active Inference (AI) and Control as Inference (CAI).
In this work, we use probability propagation on factor graphs to show that various algorithms proposed in
the literature can be seen as specific composition rules in a factor graph. We show how this unified approach,
presented both in probability space and in log of the probability space, provides a very general framework
that includes the Sum-product, the Max-product, Dynamic programming and mixed Reward/Entropy
criteria-based algorithms. The framework also expands algorithmic design options that lead to new smoother
or sharper policy distributions. We propose original recursions such as: a generalized Sum/Max-product
algorithm, a Smooth Dynamic programming algorithm and a modified versions of the Reward/Entropy
algorithm. The discussion is carried over with reference to a path planning problem where the recursions that
arise from various cost functions, although they may appear similar in scope, bear noticeable differences.
We provide a comprehensive table of composition rules and a comparison through simulations, first on a
synthetic small grid with a single goal with obstacles, and then on a grid extrapolated from a real-world
scene with multiple goals and a semantic map.

INDEX TERMS Belief Propagation, Dynamic Programming, Markov Decision Process, Path Planning,
Reinforcement Learning

I. INTRODUCTION

THERE is a growing interest in establishing connections
between probabilistic estimation methods and more

traditional stochastic control strategies [1]–[3]. Analogies
between control and estimation can be traced back to the
work of Kalman [4] and to more recent attempts to link
probabilities and rewards under the same framework [3], [5].
The terms Active Inference (AI) and Control as Inference
(CAI) have been recently coined [6] with some of these
models based on the so-called free-energy principle [7], [8],
on KL-learning [9]–[11], and on Maximum entropy [12].
Based on these proposals intriguing connections have also

been drawn, to neuroscience and brain theory [13] and causal
reasoning [14]; they all seem to share some elements with a
goal-directed behavior.

The estimation/control framework on which we focus our
attention here, may provide a unifying view for a wide range
of scenarios whenever one has a stochastic model and the
goal is to achieve a set of objectives by optimizing a cost
function defined in probabilistic terms. In this paper, to better
visualize the differences and the commonalities among the
various methods, we have taken a classic path planning
problem as a typical use case: an agent needs to navigate in a
complex and uncertain scenario basing its actions on its best
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inference of the environment to reach a goal subject to spatial
constraints.

It is largely agreed that intelligent planning, involves an
agent taking a sequence of actions on the basis of its best
estimate of the future. This is clearly the hallmark of Dy-
namic Programming (DP) algorithms for Markov Decision
Processes (MDP) and Partially-Observable Markov Decision
Processes (POMDP) [15], [16]. Indeed, in DP, an agent
acts optimally using a value function back-propagated from
the hypothetical future. Similarly, however, in an estimation
context, a best-path search can be seen as a Maximum A Pos-
teriori (MAP) solution in a stochastic dynamic model where
the start (initial) state and goal (end) state are constrained
[17]. This suggests that the two approaches can be viewed
under a unified framework and that some of the powerful
estimation techniques based on probability propagation on
graphs, may provide an ideal way for combining the two
disparate approaches and for leading to new generalizations.
In this paper, we review the most popular algorithms as they
translate into messages in probability and in log-probability
spaces. We show how the unifying framework allows us
also to derive original parametric extensions that provide the
designer with a whole suite of new algorithmic options.

A. THE PROBABILITY GRAPHS
In this work, we use directed Factor Graphs (FG), that assign
variables to edges and factors to interconnected blocks. Mes-
sage propagation in FG is more easily handled in comparison
to propagation in graphs in which the variables are in the
nodes [18]. In an FG messages propagate through a block
diagram, where each block’s function is defined indepen-
dently. Further reductions on the burden of defining message
composition rules can be achieved using Factor Graphs in
normal form (FGn), first proposed by Forney [19] [20]. In
fact, a FGn conveniently includes junction nodes (equality
constraint nodes) that split incoming and outgoing messages
when variables are shared by multiple factors. We have pro-
posed a small modification to the FGn in our Factor Graph
in Reduced normal form (FGrn) [21] by including shaded
blocks that map single variables to joint spaces. In an FGn,
when a variable has more than one parent, proper forward
and backward messages must go through the parents’ joint
space (married parents). In a FGrn instead, the shaded blocks
describe this passage and allow a unique definition of mes-
sage propagation rules through Single-Input/Single-Output
(SISO) blocks. Since, in the standard sum-product algorithm,
backward propagation through shaded blocks corresponds to
marginalization, we show in this paper how this operation can
be re-defined and how it may be mapped to different estima-
tion/control algorithms. Computational complexity issues for
some FGrn architectures are addressed in [22]. We confine
ourselves here to discrete variables, even if factor graphs
that propagate continuous distributions are possible and may
be devised also for path planning. Gaussian messages are
introduced in [23] and have been used for Kalman filter-based
tracking in [24] using FGrn. This issue will not be addressed

here and will be the subject of a future work.

B. THE PATH MODELING PROBLEM
We have proposed in some of our previous works various
techniques for modeling the motion behaviors of pedestrians
and ships [25]–[29]. More recently, while experimenting with
probability propagation in path planning problms [30], we
came to realize that the probabilistic algorithms may be the
most promising approaches for agile modeling of intelligent
agent motion in complex scenes. This led to the development
of the unified belief propagation framework for estimation
and control discussed in this paper.

We assume here that the system’s stochastic transition
function is known and that both the state and the action
spaces are discrete finite sets that can be handled with tabular
methods. Extensions to continuous spaces can be considered
with approximations to the value function, but they will
not be addressed here. Also, we do not address learning
here, because we believe that a unified view on the various
cost functions and recursions with known stochastic system
dynamics should be the first step in trying to understand
the more challenging Reinforcement Learning (RL) [31]
adaptation rules. In this paper, standard probability message
propagation, such as the Sum-product and the Max-product
algorithms [32], are compared to DP using a unified view,
together with other methods based on joint Reward/Entropy
maximization [3], [6], [33]–[35]. To our knowledge, no
comprehensive comparison exists in the literature, and our
contribution aims at providing the reader with a ready-to-use
suite of known algorithms and their original extensions, all
derived withing the unifying framework presented here.

C. OUR CONTRIBUTIONS
The main contributions of this paper can be summarized as
follows:

• The path planning problem is mapped to a Factor
Graph in Reduced Normal Form. Various algorithms,
such as the Sum-product, the Max-product, DP and
Reward/Entropy maximization (the latter is related to
structural variational inference), are included in our
framework, both in probability and in log spaces. We
show that all these algorithms are derived using differ-
ent cost functions, but they all correspond to specific
propagation rules through some of the FGrn blocks.

• Q-functions and V-functions are generalized in the log-
probability space for all the algorithms. This formula-
tion includes the well-known Q- and V-functions arising
in DP and allows us to specify the policy distribution
resulting from the algorithms with a unique expression.

• Some of the well-known algorithms are extended to a
whole new suite of parametric updates that can con-
trol the smoothness in the policy distributions. These
proposed parametric updates are original and can be
used as hyper-paraameters to balance exploration and
exploitation in reinforcement learning.
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• Simulations are provided, first on a small grid with
one goal and a set of obstacles, and then on a larger
grid extracted from a real scene with multiple goals
(exits) and a semantic map. The results show marked
differences in : (a) the speed of converge to the steady-
state value function, where probabilistic methods are
clearly favored; (b) how the Max-product algorithm may
be preferred for its faster convergence and for the shape
and smoothness of its value functions; and (c) how
various algorithms can be controlled with parametric
updates to exhibit varying levels of smoothness in their
policy distributions.

D. OUTLINE OF THE PAPER

In Section II, we present the Bayesian graph model and the
concomitant factor graph. In Section III, the Sum-product
algorithm is discussed in the framework of FGrn. In Section
IV, the maximum a posteriori solution of the Max-product
algorithm is analyzed with our proposed Sum/Max-product
algorithm described in Section V. Dynamic programming is
translated into this framework in Section VI and our proposal
for a generalized SoftDP is in Section VII. The approaches
to combined maximum reward and entropy are discussed
in Section VIII. Simplifications of some of the recursions
for deterministic systems, are discussed in Section IX. The
extension to infinite horizon models and considerations on
the steady-state solutions are included in Section X. Simu-
lations on small and realistic grids are in Section XI, with
conclusions and suggestions for further research in Section
XII.

FIGURE 1. State-Action Model as a Bayesian graph

II. THE BAYESIAN MODEL

Figure 1 shows the state-action model as a Bayesian graph
where {St} is the state sequence, {At} is the action se-
quence. We assume, without loss of generality, that both
sequences belong to discrete finite sets: At ∈ A and
St ∈ S. The reward/outcome sequence {Ot} is binary with
Ot ∈ {0, 1}. The model evolves over a finite horizon T and
the joint probability distribution of the state-action-outcome

sequence corresponds to the factorization1

p(s1a1o1 . . . sTaT oT ) = p(oT |sTaT )p(s1)p(aT )
T−1∏
t=1

p(st+1|stat)p(at)p(ot|stat),

where the function p(st+1|stat) describes the system dy-
namics, p(at) are the action priors and p(ot|stat) are the
reward/priors of outcomes on the state-action pairs. More
specifically, we assume that{

P (Ot = 1|stat) ∝ π(stat) ≥ 0;

P (Ot = 0|stat) ∝ U(stat),

where the function π(stat) serves as a prior distribution on
the pair (stat), only if Ot = 1. When Ot = 0, no prior
information is available on that state-action pair, and the
factor becomes the uniform distribution U(stat).2 Therefore,
to simplify notations, we define a factor c(stat) = π(stat) if
prior information is available; otherwise we set c(stat) =
U(stat). This formulation allows the introduction of a
reward function as

R(stat) = log c(stat) +K, (1)

where K is an arbitrary positive constant. The value K is
really irrelevant because going back to probabilities we have
c(stat) ∝ eR(stat)−K , with the constant disappearing after
normalization. We can setK to a large value if we do not like
to handle negative rewards we obtain from the log function
for K = 0. In the following, without loss of generality, we
assume that our rewards are all negative (K = 0).

The introduction of the sequence {Ot} has been proposed
earlier [3], [36] for connecting rewards to probabilities. We
would like to emphasize that interpreting the factors c(stat)
as prior information in the probability factorization, may
solve, at least for planning problems, the well-known issue of
defining an appropriate reward function. Indeed, in a practical
problem, we may have available statistics on how often a state
is visited and how certain actions may be more likely than, or
preferable to, others.

Note that when a state-action pair has zero probability, for
example for forbidden states, or impossible actions, obsta-
cles, etc., the reward function takes a value of −∞. This
is really not a problem in practice, because we can easily
approximate such a value with a large negative number.

Note that our model includes a separate factor p(at) for
the priors on At, even if such information could be included
in c(stat). We have preferred, to be consistent with the
Bayesian graph of Figure 1, to keep the two factors sepa-
rate, one for marginal action priors and one for joint priors
(rewards).

1Even if the notation should have capital letters for random variables as
subscripts and lower case letters for their values in the functions, we use a
compact notation with no subscripts when there is no ambiguity. We will
include the subscripts for the messages only when necessary.

2In our definition, we assume that π(stat) is normalized to be a valid pdf,
even if normalization is irrelevant for the inference in a probabilistic graph.
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Omitting the sequence {Ot} in the notation the factoriza-
tion is more compactly written as

p(s1a1...sTaT ) = c(sTaT )p(s1)p(aT )
T−1∏
t=1

p(st+1|stat)p(at)c(stat). (2)

.

A. THE FACTOR GRAPH
Inference in a graphical model is easily handled with ref-
erence to an equivalent factor graph. Much like in a block
diagram, variables are on the branches and factors are in the
blocks.

We use here Factor Graphs in Reduced normal form
(FGrn) [21], for wich the essential propagation rule are in
Tables 3, 4, 5, 6 and 7.

Figure 2 shows the FGrn for the Bayesian model of Fig-
ure 1 for T = 4. The prior distributions p(at) and c(stat)
are in the source nodes and the dynamics p(st+1|stat) are in
the SISO blocks. The junctions describe equality constraints,
and the shaded blocks describe the mapping from single vari-
ables’ space to a joint space, i.e., p(stat|a′t) = U(st)δ(at −
a′t) and p(stat|s′t) = δ(st−s′t)U(at). Essentially, in a shaded
block, the input variable is copied to the output and joined to
the other variable that, in that edge, carries no information
in the forward direction. Each edge has a direction and a
forward f and a backward b message associated with it. In
the following, each message has a subscript corresponding
to the variable(s) it describes and an argument which is(are)
the value(s) assumed by that(those) variable(s). Just as in any
belief propagation network, all messages are proportional to
probability distributions and their composition rules allow
the agile derivation of inference algorithms. Note how the
replicas (StAt)

i, i = 1 : 4, of the same variable (StAt)
around the diverter block have different names and messages
associated with them.

We will see how our estimation/control problem has a
unique formulation on the factor graph. By changing the
propagation rules for some of the blocks, we obtain the
optimal solutions for various problem formulations.

B. INTRODUCING CONSTRAINTS
One of the main advantages of studying inference problems
on graphs using messages, is that problem constraints are
easily included in the flow. For example, looking at Figure 2:
• A known starting state S1 = s1 can be included as a

forward message fS1(s1) = δ(s1−s1), where δ(x) = 1
if x = 0, and is 0 otherwise;

• If we have no prior information on S1, we set
fS1

(s1) = U(s1);
• Knowledge of the initial actionA1 = a1 can be included

as fA1(a1) = δ(a1 − a1);
• Knowledge of the final state (only) ST = sT is
b(STAT )4(sTaT ) = δ(sT − sT )U(aT );

• Knowledge of the state at time t0 may be included as
fSt0 (st0) = δ(st0 − st0);

• In a planning problem, a known map m(st) can be
associated to the factor c(stat) with f(StAt)3(stat) ∝
m(st)U(at);

• In the same planning problem, joint map-action infor-
mation can injected as the message f(StAt)3(stat) ∝
c(stat); if action and map are independent, and the
action prior is p(at), f(StAt)3(stat) ∝ m(st)p(at),
or equivalently f(StAt)3(stat) ∝ m(st)U(at) and
fAt(at) = p(at); etc.

We denote collectively all the constraints available on the
joint model as K1:T , with the joint model written in compact
form as p(s1a1 . . . sTaT |K1:T ). Note that, in the above for-
mulation, we have assumed a finite time segment t = 1 : T ,
but the model may as well represent a segment t = t0 + 1 :
t0 + T , or one of many segments, of a longer process, where
we have the freedom to introduce initial conditions in the
forward messages at each starting time, and final conditions
in the backward messages at the termination.

C. INFERENCE OBJECTIVES

Our inference aims at providing solutions to one or more of
the following problems:

• Find the best state sequence (S):
s∗1 → s∗2 → · · · → s∗T

• Find the best action sequence (A):
a∗1 → a∗2 → · · · → a∗T

• Find the best joint state-action sequence (SA):
(s1a1)

∗ → (s2a2)
∗ → ...→ (sTaT )

∗

• Find the best state-action sequence (SASA):
s∗1 → a∗1 → s∗2 → a∗2 → · · · → s∗T → a∗T

• Find the best action-state sequence (ASAS):
a∗1 → s∗1 → a∗2 → s∗2 → · · · → a∗T → s∗T

• Find the best policy distributions (P):
π∗(a1|s1), π∗(a2|s2) . . . π∗(aT |sT )

We will see in the following how various cost functions
determine the message composition rules across the blocks to
solve the problems above, both in the probability space and in
the log probability space depending on different optimization
criteria. In the following discussion, we will concentrate
mostly on the S sequence, on the SASA sequence and on
the policy distribution (P), since the extensions to A, SA, and
ASAS sequences are straightforward.

III. MARGINALIZATION AND THE SUM-PRODUCT

Standard inference in Bayesian model consists in marginal-
izing the global joint probability distribution to obtain dis-
tributions that are proportional to the posteriors on single
variables [18]. More specifically, for states only, for actions
only and for states and actions jointly, we want to compute
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FIGURE 2. State-Action Model for T = 4 as a Factor Graph in Reduced normal form. The one-edge blocks are sources (priors); the two-edge white blocks
represent the system dynamics; the shaded blocks map single variables to their joint space; the diverters connect the variables constrained to be equal.

the posteriors as

p(st|K1:T ) ∝
∑

sj ,j 6=t,j=1:T
aj ,j=1:T

p(s1a1 . . . sTaT |K1:T ),

p(at|K1:T ) ∝
∑

sj ,j=1:T
aj ,j 6=t,j=1:T

p(s1a1 . . . sTaT |K1:T ),

p(stat|K1:T ) ∝
∑

sj ,aj ,j 6=t,j=1:T

p(s1a1 . . . sTaT |K1:T ),

whereK1:T is the information base on which action decisions
are made. The policy distributions are obtained by fixing the
state st at time t, and accounting for the foreseeable future
until T

π∗(at|st) , p(at|st,Kt:T ) =
p(stat|Kt:T )

p(st|Kt:T )
, t = 1 : T.

(3)
The policy distribution describes at time t how likely it
is to take action at from state st, given all the available
information (constraints, priors, etc.) about the future (Kt:T ).

All the above functions can be obtained using forward
and backward message propagation using the Sum-product
rule [18], [32]. This approach essentially averages over the
variables that are eliminated across each SISO block. With
reference to Figure 2, by following the flow, for some of the
backward messages we have

b(StAt)4(stat) ∝
∑
st+1

p(st+1|stat)bSt+1(st+1), (4a)

b(StAt)1(stat) ∝ p(at)c(stat)b(StAt)4(stat), (4b)
b(StAt)2(stat) ∝ f(StAt)1(stat)c(stat)b(StAt)4(stat), (4c)

bAt(at) =
∑
st

b(StAt)2(stat), (4d)

bSt(st) =
∑
at

b(StAt)1(stat). (4e)

For some of the forward messages

fSt+1(st+1) ∝
∑
stat

p(st+1|stat)f(StAt)4(stat),

f(StAt)1(stat) = fSt(st)U(at),

f(StAt)2(stat) = U(st)fAt(at),

f(StAt)4(stat) ∝ f(StAt)1(stat)f(StAt)2(stat)c(stat).

Note that going backward through a block, the message may
not be normalized. Around the diverters, outgoing messages
are the product of the incoming ones, and are not normalized.
Posterior distributions are obtained by taking the product of
forward and backward messages:

p(st|K1:T ) ∝ fSt(st)bSt(st),
p(at|K1:T ) ∝ fAt(at)bAt(at),

p(stat|K1:T ) ∝ f(StAt)i(stat)b(StAt)i(stat), i = 1 : 4.

For readers not too familiar with probability message propa-
gation, it should be emphasized that this framework is a rigor-
ous application of Bayes’ theorem and marginalization. Also
all messages can be normalized to be valid distributions, even
if it is not strictly necessary (it is their shape that matters).
However, it is often advised to keep messages normalized for
numerical stability.

The policy distribution (3) at each t is derived as a con-
sequence of the inference obtained from the probability flow
as

π∗(at|st) ∝
f(StAt)1(stat)b(StAt)1(stat)

fSt(st)bSt(st)

=
fSt(st)U(at)b(StAt)1(stat)

fSt(st)bSt(st)

=
b(StAt)1(stat)

bSt(st)
, (5)

where we have used the edge with i = 1. It is easy to verify
that the solution would have an equivalent expression for any
other edges i = 2, 3, 4. Note also how the policy depends
only on the backward messages. The reason for this is that by
conditioning on st, all the information coming from the left
side of the graph is blocked (i.e. is irrelevant).
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A. MAX POSTERIOR SEQUENCES
Optimal sequence values, for any t = 1 : T , can be obtained
in parallel using maximization on the posteriors

s∗t = argmax
st

p(st|K1:T ) = argmax
st

fSt(st)bSt(st),

a∗t = argmax
at

p(at|K1:T ) = argmax
at

fAt(at)bAt(at),

(stat)
∗ = argmax

stat

p(stat|K1:T )

= argmax
stat

f(StAt)1(stat)b(StAt)1(stat),

In the above expression, the max posterior solutions are taken
separately on each variable. Even if they are often used in the
applications (for example in decoding convolutional codes -
the algorithm, is named BCJR after its authors [37]), they
may provide unsatisfactory sequences for path planning. In
fact, the sequences that result from the individual (local)
maximizations are unconstrained in time and may correspond
to disconnected paths [30].

B. PROGRESSIVE MAX POSTERIOR SEQUENCES
Better solutions for the max posterior approach are obtained
progressively in time following a forward procedure.3 Look-
ing at Figure 2, for the states-only (S) sequence

s∗t = argmax
st

p(s∗1...s
∗
t−1st|Kt:T )

= argmax
st

fSt(st|s∗t−1)bSt−1
(st−1),

where the conditioned forward message comes from a one-
step propagation

fSt(st|s∗t−1) =
∑
at−1

p(st|s∗t−1at−1)f(St−1At−1)4(s
∗
t−1at−1)

=
∑
at−1

p(st|s∗t−1at−1)p(at−1)c(s∗t−1at−1).

Note again on the graph that knowledge of the state at
time t − 1 "breaks" the forward flow and only the backward
flow drives the inference. Similarly, for the best State-Action
(SASA) sequence, the Progressive Max-posterior algorithm
using the messages on the graph in Figure 2 is

s∗t = argmax
st

p(s∗1a
∗
1...s

∗
t−1a

∗
t−1st|Kt:T )

= argmax
st

fSt(st|s∗t−1a∗t−1)bSt(st),

a∗t = argmax
at

p(s∗1a
∗
1...s

∗
t−1a

∗
t−1s

∗
tat|Kt:T )

= argmax
at

fAt(at)bAt(at|s∗t ),

where the conditioned forward and backward messages mean
that we have considered their values when the conditioning
variables on the left side of the graph are fixed. For the
conditioned forward messages we have

fSt(st|s∗t−1a∗t−1) = p(st|s∗t−1a∗t−1).

3On a fixed time horizon, a similar procedure can be derived going
backward in time. We prefer to maintain the framework causal and leave
it out for brevity.

For the conditioned backward messages, we have

bAt(at|s∗t ) ∝ b(StAt)2(s
∗
tat)

∝ c(s∗tat)b(StAt)4(s
∗
tat)f(StAt)1(s

∗
tat).

Since

b(StAt)1(stat) ∝ b(StAt)4(stat)f(StAt)2(stat)c(stat)
= b(StAt)4(stat)p(at)U(st)c(stat),

b(StAt)4(stat) ∝
b(StAt)1(stat)

p(at)c(stat)
,

the backward messages can be rewritten as

bAt(at|s∗t ) ∝
b(StAt)1(s

∗
tat)

p(at)
f(StAt)1(s

∗
tat)

=
b(StAt)1(s

∗
tat)

p(at)
δ(st − s∗t )U(at)

=
b(StAt)1(s

∗
tat)

p(at)
.

Therefore, the SASA estimation simplifies to

s∗t = argmax
st

p(st|s∗t−1a∗t−1)bSt(st), (6a)

a∗t = argmax
at

b(StAt)1(s
∗
tat) = argmax

at

π∗(at|s∗t ). (6b)

Note in all cases the crucial role played by the backward flow.
We have successfully demonstrated this approach for path
planning in our previous work [30]. In fact, in the progressive
max posterior algorithm, the forward flow is not necessary.
Action-only sequences and ASAS sequence can be obtained
in a similar fashion and are omitted here for brevity.

C. SUM-PRODUCT IN THE LOG-SPACE
We have seen above how in the factorized model (2), prior
distributions are related to rewards via the log transforma-
tion in (1). To provide a direct comparison to the dynamic
programming approach, we consider now some of the Sum-
product recursions in the log-space. We define the functions

Q(StAt)i(stat) , log b(StAt)i(stat), i = 1 : 4

VSt(st) , log bSt(st),

Note that there is a Q function for each message around
the diverter. The choice of notations Q (Q-function) and V
(Value-function) is intentional, as it leads to a direct compar-
ison with DP. In this formulation, there is also a V -function
for the action variables At, VAt(at) , log bAt(at). From the
definition, it is evident that both the Q- and V -functions are
negative (we have already pointed out above that this is not
a limitation). We concentrate here mostly on the state St for
which the backward recursions (4a, 4b, 4e), are written in the
log-space as

Q(StAt)4(stat) ∝ log
∑
st+1

p(st+1|stat)eVSt+1
(st+1), (7)

Q(StAt)1(stat) ∝ log p(at) +R(stat) +Q(StAt)4(stat),

VSt(st) ∝ log
∑
at

eQ(StAt)
1 (stat).
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All messages can be propagated in the log-space: the product
rule around the diverters of Figure 2 become sums and the
backward propagation rules across the dynamics block and
the shaded block are simply translated. For comparison with
the formulations that follow, we re-write the equation (7) as

Q(StAt)4(stat) ∝ log
∑
st+1

elog p(st+1|stat)+VSt+1
(st+1).

The main recursions for the Sum-product are summarized for
later comparison in the first row of Tables 1 and 2. The same
recursions, and some of the definitions in the log-space, have
been reported in [3] that also notes how the transformation
y = log

∑N
j=1 e

xj is a soft-max (y ∼ max(x1, ..., xN ) when
the xis are large), in contrast to the the hard-max that is
used in dynamic programming. Properties of this and other
soft-max functions that arise in our analyses are included in
Appendix A.

The best SASA sequence of equations (6) is equivalently
written in the log-space as

s∗t = argmax
st

log p(st|s∗t−1a∗t−1) + VSt(st),

a∗t = argmax
at

Q(StAt)1(a1, s
∗
1),

The policy distribution (5) is rewritten as

π∗(at|st) ∝ eQ(StAt)
1 (stat)−VSt (st).

IV. MAXIMUM A POSTERIORI AND THE MAX-PRODUCT
The max posterior rules, described above, are used exten-
sively for inference in Bayesian networks, even though they
do not necessarily solve the global maximum a posteriori
problem

(s∗1a
∗
1 . . . s

∗
Ta
∗
T ) = argmax

s1a1...sT aT

p(s1a1...sTaT |K1:T ).

The Sum-product propagation rules solve marginal maxi-
mum a posteriori problems after summing on the eliminated
variables, while the global optimization requires a different
strategy for obtaining the solution. The Max-product algo-
rithm [23], [32], by propagating maximum (or maxima) value
messages in the graph, instead of computing averages across
the blocks, provides the MAP solution. This is often named
bi-directional Viterbi algorithm [32]. The detailed recursions
are derived explicitely in Figure 3 for a model with T = 4.
At a generic step t, the recursions for some of the backward
messages are

b(StAt)4(stat) = max
st+1

p(st+1|stat)bSt+1
(st+1),

b(StAt)1(stat) = p(at)c(stat)b(StAt)4(stat),

bSt(st) = max
at

b(StAt)1(stat).

Again the crucial role is played by the backward flow that,
going through each SISO block, does not undergo a summa-
tion, but a max (in Max-product bayesian networks also the
forward flow is computed using max rather that sum [32]; we

focus here mostly on the backward flow). In the log-space,
the backward recursions for the states are rewritten as

Q(StAt)4(stat) = max
st+1

[
log p(st+1|stat) + VSt+1

(st+1)
]
,

Q(StAt)1(stat) = log p(at) +R(stat) +Q(StAt)4(stat),

VSt(st) = max
at

Q(StAt)1(stat).

The best SASA sequence is computed in the forward direc-
tion in way similar to the Sum-product, in both the probabil-
ity space and in the log-space, as follows

s∗t = argmax
st

p(st|s∗t−1a∗t−1)bSt(st)

= argmax
st

p(st|s∗t−1a∗t−1)eVSt (st)

= argmax
st

log p(st|s∗t−1a∗t−1) + VSt(st),

a∗t = argmax
at

b(StAt)1(s
∗
tat) = argmax

at

Q(StAt)1(s
∗
tat).

Note how the recursions are formally identical to the ones
derived for the Sum-product algorithm, but the rules change
across the shaded blocks. Also, the policy has the same
formal expression (with a different meaning for Q and V )

π∗(at|st) ∝
b(StAt)1(stat)

bSt(st)
= eQ(StAt)

1 (stat)−VSt (st). (8)

All the other sequences, S, A, SA, ASAS can be com-
puted using the probability flow in the graph following the
same formal approach, both in the Max-product and in the
Sum-product, simply by changing some of the propagation
rules. For brevity, we concentrate here only on some of the
messages, even if a detailed analysis of other parts of the
flow may reveal interesting aspects of the inference. All the
propagation rules are reported in Tables 3, 4, 5, 6 and 7,
also for the other algorithms described in the following. The
main backup recursions are summarized for comparison in
Tables 1 and 2 in the probability and in the log-space. We
would like to emphasize that propagating information via
probability distributions includes all the cases in which there
may be deterministic values in the system, i.e., when the
distributions are delta functions. Furthermore, in the Max-
product algorithm, when multiple equivalent maxima are
present, the distributions can carry multiple peaks. We will
see that, in some of the simulation examples that follow, the
Max-product messages provide a complete set of options in
the policy distributions, even when more than one best action
is available in a state.

V. THE SUM/MAX-PRODUCT
The unifying view provided by the graphical method is quite
appealing and one wonders whether there may be a general
rule that encompasses both the Sum-product and the Max-
product. By looking at the recursions in the first two rows
of Tables 1 and 2, we immediately observe that the Sum-
product, both in the probability and in the log-space, can
be seen as a soft version of the Max-product because of
the soft-max functions. Therefore, we propose a general
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TABLE 1. Summarized backup rules in probability space with b(stat) , b(StAt)1
(stat); b(st) , bSt (st); c

′(stat) , p(at)c(stat).

b(stat) b(st)

Sum product c′(stat)
∑
st+1

p(st+1|stat)b(st+1)
∑
at

b(stat)

Max product c′(stat)max
st+1

p(st+1|stat)b(st+1) max
at

b(stat)

Sum/Max product (α ≥ 1) c′(stat) α

√∑
st+1

p(st+1|stat)αb(st+1)α α

√∑
at

b(stat)α

DP c′(stat)e
∑
st+1

p(st+1|stat) log b(st+1) max
at

b(stat)

Max-Rew/Ent (α > 0) c′(stat)e
∑
st+1

p(st+1|stat) log b(st+1)
α

√∑
at

b(stat)α

SoftDP (β > 0) c′(stat)e
∑
st+1

p(st+1|stat) log b(st+1)

e

∑
at
b(stat)

β log b(stat)∑
a′t
b(sta

′
t)
β

TABLE 2. Summarized backup rules in log space with Q(stat) , Q(StAt)
1 (stat); V (st) , VSt (st); R

′(stat) = log p(at) + R(stat).

Q(stat) V (st)

Sum product R′(stat) + log
∑
st+1

elog p(st+1|stat)+V (st+1) log
∑
at

eQ(stat)

Max product R′(stat) + max
st+1

(log p(st+1|stat) + V (st+1)) max
at

Q(stat)

Sum/Max product (α ≥ 1) R′(stat) +
1

α
log

∑
st+1

eα(log p(st+1|stat)+V (st+1)) 1

α
log

∑
at

eαQ(stat)

DP R′(stat) +
∑
st+1

p(st+1|stat)V (st+1) max
at

Q(st, at)

Max-Rew/Ent (α > 0) R′(stat) +
∑
st+1

p(st+1|stat)V (st+1)
1

α
log

∑
at

eαQ(stat)

SoftDP (β > 0) R′(stat) +
∑
st+1

p(st+1|stat)V (st+1)

∑
at
Q(stat)eβQ(stat)∑
a′t
eβQ(sta

′
t)

rule that interpolates between the two solutions using a
parametrized soft-max functions. We name this generaliza-
tion the Sum/Max-product algorithm, that in the log-space
gives

Q(StAt)4(stat) =
1

α
log
∑
st+1

eα[log p(st+1|stat)+VSt+1
(st+1)],

Q(StAt)1(stat) = log p(at) +R(stat) +Q(StAt)4(stat),

VSt(st) =
1

α
log
∑
at

eαQ(StAt)
1 (stat),

with 0 < α ≤ 1.

In probability space, the updates are translated as

b(StAt)4(stat) ∝

∑
st+1

p(st+1|stat)αbSt+1
(st+1)

α

1/α

,

b(StAt)1(stat) ∝ p(at)c(stat)b(StAt)4(stat),

bSt(st) ∝

[∑
at

b(StAt)1(stat)
α

]1/α
.

Note that the function y = α

√∑N
j=1 x

α
j is also a soft-max

when the α is large. Therefore, both in the log-space and
in the probability space, for α → ∞, the parametric soft-
max functions converges to the hard max. For α = 1, the
equations become identical to those derived for the Sum-
product algorithm. More details abouts the properties of this
soft-max function are in Appendix A.
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The Max-product approach usually produces much more
defined value functions and policies, in comparison to the
Sum-product, as will be shown in some of the examples
that follow. Interpolating between the two solutions pro-
vides a whole range of new solutions beyond the traditional
Sum-product and Max-product approaches. The Sum/Max-
product updates are added as the third row in Tables 1 and 2
and more details about block propagation rules are in Tables
3, 4, 5, 6 and 7. The policy is formally the same as in the
Sum-product and the Max-product (8), but evidently, the
messages, both in the probability space and in the log-space,
carry different information.

The generalization of the Sum/Max-product has been de-
rived as a straightforward interpolation between the Sum-
product and the Max-product and such a function can span
the whole range of solutions between the maximization of the
marginals of the Sum-product algorithm to the maximization
of the global posterior of the Max-product. What is then, for
each value of α, the function that the algorithm optimizes?

In the middle part of Figure 3, we have reported the recur-
sions of the Sum/Max-product algorithm in the probability
space for T = 4. It is easily seen, by looking at the top of
the same figure, that they match the recursions of the Sum-
product algorithm as applied to the factorization

p(s1a1 . . . sTaT )
α = c(sTaT )

αp(s1)
αp(aT )

α

T−1∏
t=1

p(st+1|stat)αp(at)αc(stat)α,

Therefore, in analogy to the Sum-product algorithm, the
Sum/Max-product algorithm provides the posteriors

p(st|K1:T ) ∝
∑

sj ,j 6=t,j=1:T
aj ,j=1:T

p(s1a1 . . . sTaT |K1:T )
α,

p(at|K1:T ) ∝
∑

sj ,j=1:T
aj ,j 6=t,j=1:T

p(s1a1 . . . sTaT |K1:T )
α,

p(stat|K1:T ) ∝
∑

sj ,aj ,j 6=t,j=1:T

p(s1a1 . . . sTaT |K1:T )
α,

if applied globally to the whole time horizon. The Progressive
posteriors, just as in Subsection III-B, can be written with
the distributions raised to the power α. The details are not
repeated here for brevity.

Evidently the power of a distribution is not a normalized
distribution, but this is not a problem in message propagation,
as we mentioned earlier, because normalization is just a scale
that is irrelevant for the inference. To better explain the
generalization, recall that raising a probability distribution
to a power greater than one, has the effect of sharpening
the distribution around its maximum (or maxima, if multi-
ple maxima are present). Therefore, raising the whole joint
density to a large power has the effect of concentrating it on
the global maximum a posteriori solution of the Max-product
algorithm.

VI. DYNAMIC PROGRAMMING ON THE FACTOR GRAPH
The standard dynamic programming approach is based on the
maximization of the expected sum of rewards [16], [31]. In
previous sections, we have included rewards in factorization
(2), but we have formulated the optimization as an estimation
problem, i.e. the maximization of posterior probabilities,
or marginals, which only implicitly involve the rewards.
Evidently, one wonders whether the two approaches can be
seen under a unified framework - after all Bellman backups
resemble backward message combinations.

We show here that it is possible to map DP directly into
the factor graph formulation if we consider rewards and their
expectations as contributing to the probability messages, but
in the log-space.

The dynamic programming algorithm [16] is derived as the
solution to the following problem

(a∗1 . . . a
∗
T ) =

=argmax
a1...aT

E∼p(s1a1...sT aT )

[
T∑
t=1

(R(stat) + log p(at))

]
=argmax

a1...aT

∑
s1,...,sT

p(s1a1 . . . sTaT )[
T∑
t=1

(R(stat) + log p(at))

]

=argmax
a1...aT

∑
s1,...,sT

p(s1)
T−1∏
t=1

p(st+1|stat)[
T∑
t=1

(R(stat) + log p(at))

]
,

where p(s1a1 . . . sTaT ) does not include the rewards and the
priors on at appears in the log in the summation. This is
slightly different from the pure sum of rewards. We introduce
this slight modification because we want to obtain recursions
that we can directly compare to the ones derived for the Sum-
product and for the Max-product algorithms. In any case,
this is not a crucial difference because log p(at) could be
incorporated into R(stat) and p(at) can be assumed to be
uniform.

We have reported in bottom part of Figure 3, the DP
recursions for T = 4. Note that here the rewards appear
as additive terms and there is a mix of maxima and sums.
Formally

Q(StAt)1(stat) = log p(at) +R(stat)+

+
∑
st+1

p(st+1|stat)VSt+1
(st+1),

VSt(st) = max
at

Q(StAt)1(stat).

Translating the recursions in the probability space, we have

b(StAt)1(stat) = p(at)c(stat)

e
∑
st+1

p(st+1|stat) log bSt+1
(st+1),

bSt(st) = max
at

b(StAt)1(stat).
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FIGURE 3. Backward recursions for T = 4. Max-product (top); Sum/Max-product (middle); Dynamic programming (bottom). Note the presence of the backward
message at the end of the chain that may carry information from further steps or may represent final constraints. The recursions must be read from right to left.

The crucial difference between DP and the Sum-product
algorithm is in the fact that averages and maxima are taken
in the log-space on the value function. Conversely in the
Sum-product, they are taken in the probability space on the
backward distributions. Therefore, DP can be formulated in
terms of probability messages traveling on the same factor
graph of the Sum-product algorithm, but with a different
combination rules. All the propagation rules for DP in the
FGrn of Figure 2 are reported in Tables 3, 4, 5, 6 and 7. The

main DP recursions are also in Tables 1 and 2 for comparison.
The best SASA sequence, written both in the log-space

and in the probability space, is immediately derived from the
graph of Figure 2 as

s∗t = argmax
st

p(st|s∗t−1a∗t−1)VSt(st)

= argmax
st

p(st|s∗t−1a∗t−1) log bSt(st),

a∗t = argmax
at

Q(StAt)1(s
∗
tat) = argmax

at

b(StAt)1(s
∗
tat),
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The policy distribution has the same formal expression (8).

VII. SOFTDP
The presence of the max operator in the DP algorithm,
suggests that, similarly to the Sum/Max-product approach,
we could replace the max operator with a soft-max function
to provide a different interpolation between a more entropic
solution and the optimal DP algorithm. Using the soft-
max function r(x1, . . . , xN ;β) =

∑N
i=1 xie

βxi/
∑N
j=1 e

βxj

(common in neural network architectures), we propose the
following SoftDP updates

Q(StAt)1(stat) = log p(at) +R(stat)

+
∑
st+1

p(st+1|stat)VSt+1
(st+1),

VSt(st) =

∑
at
eβQ(StAt)

1 (stat)Q(StAt)1(stat)∑
a′t
eβQ(StAt)

1 (sta′t)
.

The parameter β ≥ 0 can be used to control the sharpness
of the soft-max function. If β is a large positive number,
the soft-max tends to the maximum. When β is a small
positive number, the soft-max function tends to return the
mean. The soft-max is further discussed in Appendix A. We
have not investigated the existence of a function that these
recursions optimize for a finite value of β, as in the case of the
Sum/Max-product algorithm. We leave it to further analyses.
However, we observe that lowering the value of β shifts the
policy distribution towards a smoother, i.e., more entropic,
configuration. We show this effect in the simulations (§XI).

In the probability space, the recursion for the backward
message b(StAt)1(stat) is the same as in DP, while the update
for bSt(st) becomes

bSt(st) ∝ exp

[∑
at
log b(StAt)1(stat)bSt(st)

β∑
a′t
b(StAt)1(sta

′
t)
β

]
.

We add this as a SoftDP option in our suite of algorithms with
all the propagation rules on the FGrn specified in Tables 3, 4,
5, 6 and 7, and the main recursions included in Tables 1 and
2 for comparison.

VIII. MAXIMUM EXPECTED REWARD AND ENTROPY
In all the previous approaches to estimation and control, we
have derived the policies as consequences of optimization on
the graph of Figure 2. A different formulation can be adopted
if we formally add to the Bayesian graph "policy" branches
π(at|st) that go from each state St to each actionAt and pose
the problem as the functional optimization problem of finding
the best π(at|st), given the evidence K1:T . The question is:
how do we formalized the total reward function? Levine [3],
in his excellent review, suggests that ”less confident” behav-
iors with respect to the standard probabilistic inference (the
Sum-product) could be obtained if we modify the function
to optimize. In fact, he maintains that the recursions for the
Sum-product approach derived above, may be too optimistic

within the context of RL. The idea is to add an extra term
to the rewards to account also for policy entropy. Levine
shows that the modification can also be related to structural
variational inference [3]. Entropy maximization is also a
common criterion in practical uses of RL [33] and stochastic
control [12]. Levine [3] proposes the following formulation:

{π∗(a1|s1) . . . π∗(aT |sT )} =

argmaxE∼p̂(s1a1...sT aT )

[
T∑
t=1

R′(stat)− log π(at|st)

]
,

where R′(stat) = R(stat) + log p(at) and

p̂(s1a1 . . . sTaT ) =

p(s1)π(aT |sT )
T−1∏
t=1

p(st+1|stat)π(at|st).

Note that here the policy distributions are included in the
factorization. The extra term log π(at|st) pushes for entropy
maximization. The backup recursions for the optimal policy
distributions [3], in the factor graph notations, are

Q(StAt)1(stat) = log p(at) +R(stat)

+
∑
st+1

p(st+1|stat)VSt+1
(st+1), (9a)

VSt(st) =
1

α
log
∑
at

eαQ(StAt)
1 (stat), (9b)

with α = 1. The optimal policy distributions are also
shown to have the usual formal expression π∗(at|st) ∝
e(Q(StAt)

1 (stat)−V (st)). In our effort to provide more general
approaches to the policy search, we have generalized the soft-
max function to include an extra parameter α in (9) that for
α → ∞ gives the maximum, and therefore the DP solution,
and for α = 1 Levine’s Max-Reward/Entropy solution.

We have worked backward the recursion (9) for a generic
α, and shown in Appendix B that the generalized recursions
solve the following optimization problem

{π∗(a1|s1) . . . π∗(aT |sT )} = argmaxE∼p̂(s1a1...sT aT )[
T∑
t=1

R′(stat)−
1

α
log πα(at|st)

]
, (10)

where

R′(stat) = R(stat) + log p(at),

πα(at|st) =
π(at|st)α∑
a′t
π(a′t|st)α

, t = 1 : T ;

p̂(s1a1. . . sTaT ) =

p(s1)πα(aT |sT )
T−1∏
t=1

p(st+1|stat)πα(at|st).

The proof in Appendix B follows steps similar to those used
by Levine [3] and where we show how the extra term gives
rise to (iterative) simultaneous reward and entropy maxi-
mization. Note that when α is large, the extra term becomes
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progressively irrelevant, and the distributions πα(at|st) be-
come more concentrated on the max value of the Q-function,
thereby recovering the DP solution. Furthermore, when α <
1, more weight is given to the extra term, the distributions
πα(at|st) becomes smoother and we have more entropic
policy distributions. We demonstrate this effect in some of
the simulations that follow. It should be mentioned that the
criterion does not simply add an entropy term to the rewards,
because the policy distribution affects also the reward as
it appears in the factorization used in the expectation (see
Appendix B for additional insights).

The propagation rules in the FGrn for the Max-
Rew/Entropy approach are in Tables 3, 4, 5, 6 and 7, and
the main recursions are added to Tables 1 and 2 also in the
probability space as

b(StAt)1(stat) = p(at)c(stat)

e
∑
st+1

p(st+1|stat) log bSt+1
(st+1)

bSt(st) =

[∑
at

b(StAt)1(stat)
α

] 1
α

.

IX. DETERMINISTIC SYSTEMS
The approach to optimal control in this paper is based on
the assumption that the system description p(st+1|stat) is
stochastic. There are cases, however, in which the system
transitions are deterministic, i.e., given stat, we have exact
knowledge of st+1 through a deterministic function st+1 =
g(stat). The beauty of the stochastic framework is that
these special cases are also included in the formulation and
correspond to a transition probability function that is a delta
function p(st+1|stat) = δ (st+1 − g(stat)). Also, if no prior
on the actions is available, p(at) = U(at). The updates
do not change, but some of them in the various methods
may coincide, because the summations (expectations) in the
updates disappear and the prior on At is irrelevant. More
specifically, by looking at Tables 1 and 2, the updates for the
Q-functions, and their probability-space counterparts, have
the same (Bellman’s) recursions

Q(StAt)1(stat) = R(stat) + VSt+1
(g(stat)),

b(StAt)1(stat) = c(stat)bSt+1
(g(stat)).

However, there are differences in the V -function updates. For
the Sum-product and the Max-Rew/Ent (α = 1), we have

VSt(st) = log
∑
at

eQ(StAt)
1 (stat),

bSt(st) =
∑
at

b(StAt)1(stat).

For the Max-product and DP, we have

VSt(st) = max
at

Q(StAt)1(stat),

bSt(st) = max
at

b(StAt)1(stat).

For the others, we have the parametrized soft-max function
with various values of β and α. Therefore, by direct com-
parison, we can conclude that, when the system is deter-
ministic: DP and Max-product coincide; Mean-product and
Max-Rew/Ent (α = 1) coincide (also recognized in [3]). The
remaining cases are interpolations of the others. We have
verified in our limited simulations that this is indeed the case
and that the solutions in the various groups, even in this
deterministic case, are different.

X. INFINITE HORIZON CASE AND THE STEADY-STATE
We have presented the model in Figure 1 and the various
algorithms that stem from the model with reference to a finite
horizon scenario. However, all the analyses easily extends to
an infinite-horizon framework simply by adding a discount
factor 0 < γ ≤ 1 to the optimized functions and then to
the updates. For example, the standard DP updates, in both
spaces become

Q(StAt)1(stat) = log p(at) +R(stat)

+γ
∑
st+1

p(st+1|stat)VSt+1(st+1),

b(StAt)1(stat) = p(at)c(stat)

e
γ
∑
st+1

p(st+1|stat) log bSt+1
(st+1).

Also, for the Sum-product, we have

Q(StAt)1(stat) = log p(at) +R(stat)

+γ log
∑
st+1

elog p(st+1|stat)+VSt+1
(st+1)

In general, even if γ = 1, the backward recursions can be
run to verify that a steady-state configuration for the Q, the
V -function and the policy π∗ can be found. The analysis of
the mathematical conditions for convergence are beyond the
scope of this paper. However, generally speaking, if all the
states are reachable, a stable configuration should exist. We
have verified experimentally that all the methods do converge
(also for γ = 1), but they exhibit marked differences in
the number of iterations required to reach the steady state
equilibrium. The Max-product algorithm shows the fastest
convergence with the Sum-product following in the list.
DP and the other methods seem to show a much slower
convergence speed. We show this effect in the simulations
that follow.

XI. SIMULATIONS
We have simulated the various recursions on a path planning
problem on two discrete grids. The first set of simulations
is performed on a small 6x6 square grid shown in Figure 4,
where we have one goal (bull’s eye and green) and obstacles
(dark gray). The states are the positions on the grid and
the actions correspond to one of the nine possible single-
pixel motions {up-left, up, up-right, left, center (still), right,
down-left, down, down-right}. The reward function has the
values 0 on the goal, −10 on the obstacles and −1 on other
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TABLE 3. Forward distributions for the source blocks.

fAt (at) fS0 (s0) f(StAt)(stat)

Sum product
Max product
Sum/Max product
DP
Max-Rew/Ent
SoftDP

p(at) p(s0) c(stat)

TABLE 4. Propagation rules for action shaded blocks.

bAt (at) f(StAt)(stat)

Sum product
Max-Rew/Ent (α = 1)

∑
st

b(StAt)(stat) fAt (at)U(st)

Max product
DP max

st
b(StAt)(stat) fAt (at)U(st)

Sum/Max product
Max-Rew/Ent (α 6= 1) α

√∑
st

b(StAt)(stat)
α fAt (at)U(st)

SoftDP exp

[∑
st

log b(StAt)(stat)b(StAt)(stat)
β∑

s′t
b(StAt)(s

′
tat)

β

]
fAt (at)U(st)

TABLE 5. Propagation rules for state shaded blocks.

bSt (st) f(StAt)(stat)

Sum product
Max-Rew/Ent (α = 1)

∑
at

b(StAt)(stat) fSt (st)U(at)

Max product
DP max

at
b(StAt)(stat) fSt (st)U(at)

Sum/Max product
Max-Rew/Ent (α 6= 1) α

√∑
at

b(StAt)(stat)
α fSt (st)U(at)

SoftDP exp

[∑
at

log b(StAt)(stat)b(StAt)(stat)
β∑

a′t
b(StAt)(sta

′
t)
β

]
fSt (st)U(at)

pixel positions. The motion is stochastic with a transition
function p(st+1|stat) that has probability 1/2 for the in-
tended direction and the rest of the probability (1/2) spread
equally on the other eight directions. Built in the transition
function are also re-normalizations when the transition is
close to the boundaries: when some of the new projected
states are outside the grid, their probabilities are set to zero,
and the remaining probability is spread equally on the other

pixels. No initial or final conditions are set on the model. The
recursions are run until convergence to a steady state value
function.

All the algorithms lead to policies that would allow an
agent, starting from any position on the grid, to reach the
goal in a finite number of steps. The values reported in the
squares and the max policy arrows in Figure 4 reveal how
the different solutions direct our potential agent in slightly
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TABLE 6. Propagation rules for the dynamics block.

b(StAt)(stat) fSt+1
(st+1)

Sum product
∑
st+1

p(st+1|stat)bSt+1
(st+1)

∑
stat

p(st+1|stat)f(StAt)(stat)

Max product max
st+1

p(st+1|stat)bSt+1
(st+1) max

stat
p(st+1|stat)f(StAt)(stat)

Sum/Max product
α

√∑
st+1

p(st+1|stat)αbSt+1
(st+1)α α

√∑
stat

p(st+1|stat)αf(StAt)(stat)α

DP
SoftDP
Max-Rew/Ent

e
∑
st+1

p(st+1|stat) log bSt+1
(st+1) e

∑
stat

p(st+1|stat) log f(StAt)(stat)

TABLE 7. Propagation rules for the diverter.

Sum product
Max product
Sum/Max product
DP
Max-Rew/Ent
SoftDP

b(StAt)1 (stat) ∝ f(StAt)2 (stat)f(StAt)3 (stat)b(StAt)4 (stat)
b(StAt)2 (stat) ∝ f(StAt)1 (stat)f(StAt)3 (stat)b(StAt)4 (stat)
b(StAt)3 (stat) ∝ f(StAt)1 (stat)f(StAt)2 (stat)b(StAt)4 (stat)
f(StAt)4 (stat) ∝ f(StAt)1 (stat)f(StAt)2 (stat)b(StAt)3 (stat)

different paths to avoid the obstacles. In the lower right
corner of the figure, we also report the increments in reaching
the steady-state solution for the various algorithms in a log-
log graph (also the parameters are reported in the legend).

The algorithm is stopped only when all the increments
in the value function are below 10−5. It is noteworthy to
see how the Max-product algorithm reaches the steady-state
solution in a very limited number of steps (fastest conver-
gence) and how the Sum-product and the Sum/Max-product
algorithms converge at a much faster rate in comparison to
the others.

The results of another set of simulations are reported in
Figures 5, 6, 7, 9 and 8. Here, we have a grid extracted
from a real dataset acquired at an intersection on the Stan-
ford campus with pedestrians and bikes. The scene, with no
agents, is simplified to 17× 23 pixels, with goals (exits) and
rewards assigned to various areas (semantic map) as shown
in Figure 5. We assume that our agent is a pedestrian and
the actions are the same nine actions we have used above for

the smaller grid. The rewards are: R(st) = 0 (goals: bull’s
eye and green); -1 (pedestrian walkways: white); -10 (streets:
light gray); -20 (grass: dark gray); -30 (obstacles: dark).
The convergence behavior to a steady-state value function is
similar to the one shown for the smaller grid. The number
of iterations to reach a precision of 10−5 on all the states
are: [Sum-product: 29; Max-product: 11; Sum/Max-product
(α = 3): 15; Soft DP (β = 0.2): 127; Soft DP (β = 0.6):
113; DP: 120; Max Rew/Ent (α = 0.2): 187; Max Rew/Ent
(α = 1): 128; Max Rew/Ent (α = 6): 120]. Note how quickly
the Max-product and the probabilistic methods converge
when compared to the others. The graph of the actual incre-
ments for the various algorithms is shown in the log scale
in Figure 8. Figure 5 shows, for each state, the maximum
policy directions for all the algorithms. The arrows point
towards the preferences implied by the semantic information:
pedestrians prefer walkways to streets; grass and obstacles
are avoided. We observe a marked effect on the results of the
Max-product algorithm that maintains the multiple maxima
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Value for Sum-Product (22 iterations) Policy for Sum-Product Value for Max-Product (12 iterations) Policy for Max-Product

Value for Sum/Max-Product (15 iterations) Policy for Sum/Max-Product Value for SoftDP (89 iterations) Policy for SoftDP

Value for SoftDP (69 iterations) Policy for SoftDP Value for DP (81 iterations) Policy for DP

Value for Max Rew/Ent (125 iterations) Policy for Max Rew/Ent Value for Max Rew/Ent (90 iterations) Policy for Max Rew/Ent

Value for Max Rew/Ent (88 iterations) Policy for Max Rew/Ent

Comparison

FIGURE 4. Max policy direction for the various algorithms (right column). At the top of each figure are also reported the number of iterations necessary to reach a
steady-state value function (on the left columns the numerica values). The lowest right plot shows the value function increments as the iterations progress towards
steady-state.
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Sum-Product (29 iterations) Max-Product (11 iterations) Sum/Max-Product (15 iterations)

SoftDP (127 iterations) SoftDP (113 iterations) DP (120 iterations)

Max Rew/Ent (187 iterations) Max Rew/Ent (128 iterations) Max Rew/Ent (120 iterations)

FIGURE 5. Max policy direction for the various algorithms (right column). At the top each figure are also reported the number of iterations necessary for the value
function to reach its steady-state configuration.
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Sum-Product (29 iterations) Max-Product (11 iterations) Sum/Max-Product (15 iterations)

SoftDP (127 iterations) SoftDP (113 iterations) DP (120 iterations)

Max Rew/Ent (187 iterations) Max Rew/Ent (128 iterations) Max Rew/Ent (120 iterations)

FIGURE 6. Numerical visualization of the value function for the various algorithms.
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FIGURE 7. 3D Plots of −VSt (st) for the various algorithms.

directions corresponding to the equivalent solutions. These
multiple options appear smoothed out in the other methods.
The Max-product requires the minimum number of steps to
stabilize its configurations. Figure 7 shows also some of the
negative value functions −V (st) (they can be thought as
potential functions) superimposed on the original scene for
the various methods and for some hyper-parameter choices.
The comparison clearly shows that the various algorithm lead
to intriguingly smooth solutions, except for the Max-product

that produces a very sharp value function with very well
defined valleys.

Just as in the simulations on the smaller grid, we have in-
cluded no paths on the map, because in all methods an agent
that starts anywhere, will reach one of the goals in all cases.
This can be easily verified by following the arrows in Figure
5. A much more revealing visualization of the differences
among the various methods is displayed in Figure 9, where at
a generic point on the map, we plot the policy distributions. In

18 VOLUME 0, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3148127, IEEE Access

Palmieri et al.: A Unifying View of Estimation and Control Using Belief Propagation with Application to Path Planning

Comparison

FIGURE 8. Comparison of the value function increments for the various algorithm for the example of Figure 5.

FIGURE 9. Policy distributions at a generic point (red on the map) for the various methods for different parameter choices. The goals are depicted in green.

the first column, the policies for the probabilistic methods are
shown with the Max-product clearly producing a rather sharp
behavior with all the multiple equivalent options. Recall that
the map has multiple goals and the agent in that position
has more than one option to achieve optimality (see also
Figure 5 in that position). In the second column, we report
the results of the DP approach in its standard form (bottom
graph) and in its soft parametrized versions. Note how, for
the two values β = 0.3 and β = 0.6, an agent may be led to
consider more options with respect to DP and if we look also
at the maximum policy on the map of Figure 5, it may even
result in a different path. In the third column, we report the
results of the Max Rew/Ent algorithm for various values of
the parameter α. We notice, as expected from the theory, that
when α < 1, the policy distribution is more entropic and that
when α increases, the distribution tends to the DP policy.

XII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have provided a unified view of a set of
solutions to the MDP problem using probabilistic formalism
on a factor graph. The various algorithms span a gamut from
a standard Sum-product (marginalization), to Dynamic pro-
gramming to Max-Reward/Entropy methods. We have shown
how the various approaches can be viewed as different
combination rules through two of the blocks on a Factor
Graph in Reduced Normal form, showing that estimation
and control may merge naturally using this framework. Our
review of the classical methods has been augmented with
original parametric generalizations, providing a whole suite
of algorithms that can be easily implemented using the same
belief propagation framework. The resulting set of choices,
presented here, both in the probability and in the log space,
may enhance the options for decision makers that may need
to control the sharpness of their solutions by adopting more
or less entropic cost functions. The set of solutions provided
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here, may also be useful in designing on-line reinforce-
ment learning algorithms that may require V- or Q-functions
that seek a balance between exploration and exploitation in
their current model knowledge. We have included in this
paper typical results on discrete grids that reveal marked
differences among some of the methods. Our computational
results suggest that the Max-product algorithm, optimal max-
imum a posteriori solution, together with other probabilistic
methods, such as the Sum-product and its Sum/Max-product
generalizations, shows faster converge to the steady-state
configuration in comparison to other reward-based methods,
that are typically derived in the log space. Another practical
advantage of having a unified formulation for the various
algorithms is software tranferability: a unified algorithm
can easily accomodate risk propensity of decision makers.
For the path planning problem on grids, we have produced
simulation software that can be obtained on request. Further
work on the topic will be devoted to continuous spaces,
approximations based on heuristic serach, and applications
involving interacting agents.

.

APPENDIX A SOFT-MAX FUNCTIONS
We review here some of the soft-max functions that are used
in the recursions discussed in the paper. For all the functions,
we consider the ranked set of real numbers x1, x2, . . . , xN ,
with x1 ≤ x2 ≤ · · · ≤ xN .

Theorem A.1. Consider the following expression

s(x1, . . . , xN ) = log
N∑
j=1

exj .

This function has the property that when xN � xN−1,
s(x1, . . . , xN )→ max(x1, . . . , xN ) = xN .

Proof. The function can rewritten as

s(x1, . . . , xN ) = log (ex1 + ex2 + · · ·+ exN )

= log exN
(
ex1−xN + ex2−xN + · · ·+ 1

)
When xN is large, the differences also become large neg-
ative numbers. Therefore, the first N − 1 terms inside the
parenthesis tend to zero and s(x1, . . . , xN )→ xN .

Theorem A.2. A parametrized soft-max function can be
defined as the expression

g(x1, . . . , xN ;α) =
1

α
log

N∑
j=1

eαxj

where α ≥ 1. This function has the property that

lim
α→∞

g(x1, . . . , xN ;α) = max(x1, . . . , xN ) = xN .

Proof. The function can be bounded as
1

α
log eαxN ≤ g(x1, . . . , xN ;α) ≤ 1

α
logNeαxN ,

xN ≤ g(x1, . . . , xN ;α) ≤ logN

α
+ xN ,

that for α → ∞ achieves the maximum xN . Note that for
α > 1, from the bound, the soft-max always exceeds the
maximum value, i.e., tends to xN from the right.

It is useful to look at the expression when 0 < α < 1.

Theorem A.3. When α is a very small positive number

g(x1, . . . , xN ;α) ' 1

α
logN + µ,

where µ = (1/N)
∑N
i=1 xi is the arithmetic mean. The

function diverges for α → 0, but for small values of α, the
function tends to become independent on any specific xi.

Proof. The function can be written as

g(x1, . . . , xN ;α) =
1

α
log

(
N∑
i=1

eα(xi−µ)eαµ

)

=
1

α
log

N∑
i=1

eα(xi−µ) + µ.

When α approaches zero, the exponents become ' 1 and we
have the result.

Theorem A.4. Another parametric soft-max function is

h(x1, . . . , xN ;α) =

 N∑
j=1

xαj

 1
α

,

where here xi ≥ 0, i = 1 : N . Here too, for α → ∞,
h(x1, . . . , xN ;α)→ xN .

Proof. From the bounds

(xαN )
1
α ≤ h(x1, . . . , xN ;α) ≤ (NxαN )

1
α ,

xN ≤ h(x1, . . . , xN ;α) ≤ N 1
αxN ,

as α increases N
1
α → 1 and the function tends to xN .

Theorem A.5. The function h(x1, . . . , xN ;α), just as
g(x1, . . . , xN ;α), diverges for α→ 0, but for small α

h(x1, . . . , xN ;α) ' N 1
α ,

which, again as in g, doas not depend on any of the xi.

Proof. easily seen as xαi ' 1 for small α.

Theorem A.6. Another soft-max functions can be defined as

r(x1, . . . , xN ;α) =

∑N
i=1 xie

αxi∑N
j=1 e

αxj
.

This function is well-known in the neural network literature,
where the vector function eαxi/

∑
j e
αxj tends to a distribu-

tion concentrated on the maximum. By taking the expectation
with such a distribution, we get the soft-max. Therefore, when
α→∞, r(x1, . . . , xN ;α)→ xN .
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Proof. The function can re-written using the ranked set as

r(x1, . . . , xN ;α) =

∑N−1
i=1 xie

αxj + xNe
αxN∑N−1

j=1 eαxj + eαxN

=

∑N−1
i=1 xie

α(xj−xN ) + xN∑N−1
j=1 eα(xj−xN ) + 1

.

For α → ∞ both summations tend to zero, because the
exponents are negative, and we have the result.

Theorem A.7. This soft-max function, when α → 0+

does not diverge, but tends to the arithmetic mean
r(x1, . . . , xN ;α)→ 1/N

∑N
i=1 xi.

Proof. Trivial, because for α = 0 all the exponentials are
equal to one.
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APPENDIX B OPTIMIZING REWARD AND ENTROPY
To better understand the nature of the function being optimized in (10), and how it gives rise to an entropy term, let us write it
explicitely for T = 4, using the compact otation R′(stat) = R(stat) + log p(at). The function to optimize is∑

s1...s4

∑
a1...a4

p(s1)πα(a1|s1)p(s2|s1a1)πα(a2|s2)p(s3|s2a2)πα(a3|s3)p(s4|s3a3)πα(a4|s4)[
R′(s1a1)−

1

α
log πα(a1|s1) +R′(s2a2)−

1

α
log πα(a2|s2) +R′(s3a3)

− 1

α
log πα(a3|s3) +R′(s4a4)−

1

α
log πα(a4|s4)

]
,

(11)

Starting from the last term, in (11) we identify the backward recursions

1

α

∑
s4

p(s4|s3a3)


∑
a4

πα(a4|s4)αR′(s4a4) +

H(πα(a4|s4))︷ ︸︸ ︷∑
a4

πα(a4|s4) log
1

πα(a4|s4)︸ ︷︷ ︸
V (s4)


︸ ︷︷ ︸

Q(s3a3)

1

α

∑
s3

p(s3|s2a2)


∑
a3

πα(a3|s3)(αR′(s3a3) + αQ(s3a3)) +

H(πα(a3|s3))︷ ︸︸ ︷∑
a3

πα(a3|s3) log
1

πα(a3|s3)︸ ︷︷ ︸
V (s3)


︸ ︷︷ ︸

Q(s2a2)

1

α

∑
s2

p(s2|s1a1)


∑
a2

πα(a2|s2)(αR′(s2a2) + αQ(s2a2)) +

H(πα(a2|s2))︷ ︸︸ ︷∑
a2

πα(a2|s2) log
1

πα(a2|s2)︸ ︷︷ ︸
V (s2)


︸ ︷︷ ︸

Q(s1a1)

1
α

∑
s1
p(s1)


∑
a1

πα(a1|s1)(αR′(s1a1) + αQ(s1a1)) +

H(πα(a1|s1))︷ ︸︸ ︷∑
a1

π(a1|s1) log
1

πα(a1|s1)︸ ︷︷ ︸
V (s1)

.

(12)

Note how the value function V (st) (not optimized here) is written as a recursive superposition of reward and policy entropy.
The parameter α controls the balance between the two terms and the power of the distribution. Note that the policy function
multiplies also the reward term. Therefore, the optimized policy distribution will shape, in a non trivial way, the effects of the
rewards with respect to the entropy.

Following the approach in Levine [3], using our modified cost function, in (11) we search for the best policy distribution
starting from re-writing the last term using the KL-divergence

1
α

∑
s4
p(s4|s3a3)

[∑
a4
πα(a4|s4) (αR′(s4a4)− log πα(a4|s4))

]
=

1
α

∑
s4
p(s4|s3a3)

[∑
a4
πα(a4|s4)

(
log eαR

′(s4a4)

πα(a4|s4)

∑
a′4
eαR
′(s4a

′
4)∑

a′4
eαR
′(s4a′4)

)]
=

1
α

∑
s4
p(s4|s3a3)

−DKL
(
πα(a4|s4)

∥∥∥∥ eαR
′(s4a4)∑

a′4
eαR
′(s4a′4)

)
+ log

∑
a′4

eαR
′(s4a

′
4)

︸ ︷︷ ︸
eαV (s4)

 =

∑
s4
p(s4|s3a3)

[
−DKL

(
πα(a4|s4)

∥∥∥ eαR′(s4a4)

eαV (s4)

)
+ V (s4)

]
.

(13)
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The optimum value is obtained when the DKL(.‖.) = 0, i.e., when πα(a4|s4) = eαR
′(s4a4)

eαV (s4) , and the optimal policy
distribution is

π∗(a4|s4) ∝
eR
′(s4a4)

eV (s4)
=
eQ(s4a4)

eV (s4)
,

where we have defined Q(s4a4) = R′(s4a4). Now the optimized expression
∑
s4
p(s4|s3a3)V (s4) is carried over

R′(s3a3) +
∑
s4

p(s4|s3a3)V (s4)︸ ︷︷ ︸
Q(s3a3)

− 1

α
log πα(a3|s3).

Taking the expectation, we obtain (14)

1
α

∑
s3
p(s3|s2a2)

[∑
a3
πα(a3|s3) (αQ(s3a3)− log πα(a3|s3))

]
=

1
α

∑
s3
p(s3|s2a2)

[∑
a3
πα(a3|s3)

(
log eαQ(s3a3)

πα(a3|s3)

∑
a′3
eαQ(s3a

′
3)∑

a′3
eαQ(s3a

′
3)

)]
=

1
α

∑
s3
p(s3|s2a2)

−DKL
(
πα(a3|s3)

∥∥∥∥ eαQ(s3a3)∑
a′3
eαQ(s3a

′
3)

)
+ log

∑
a′3

eαQ(s3a
′
3)

︸ ︷︷ ︸
eαV (s3)

 =

1
α

∑
s3
p(s3|s2a2)

[
−DKL

(
πα(a3|s3)

∥∥∥ eαQ(s3a3)

eαV (s3)

)
+ αV (s3)

]
.

(14)

where DKL = 0 when πα(a3|s3) = eαQ(s3a3)/eαV (s4). The best policy distribution is then π∗(a3|s3) ∝ eQ(s3a3)/eV (s4).
Carrying over

∑
s3
p(s3|s2a2)V (s3), we have

R′(s2a2) +
∑
s3

p(s3|s2a2)V (s3)︸ ︷︷ ︸
Q(s2a2)

− 1

α
log πα(a2|s3).

Following similar steps, we have π∗(a2|s2) ∝ eQ(s2a2)

eV (s2) and

R′(s1a1) +
∑
s2

p(s2|s1a1)V (s2)︸ ︷︷ ︸
Q(s1a1)

− 1

α
log πα(a1|s1).

The last step is
1
α

∑
s1
p(s1)

[∑
a1
πα(a1|s1) (αQ(s1a1)− log πα(a1|s1))

]
=

1
α

∑
s1
p(s1)

[∑
a1
πα(a1|s1)

(
log eαQ(s1a1)

πα(a1|s1)

∑
a′1
eαQ(s1a

′
1)∑

a′1
eαQ(s1a

′
1)

)]
=

1
α

∑
s1
p(s1)

−DKL
(
πα(a1|s1)

∥∥∥∥ eαQ(s1a1)∑
a′1
eαQ(s1a

′
1)

)
+ log

∑
a′1

eαQ(s1a
′
1)

︸ ︷︷ ︸
eαV (s1)

 =

1
α

∑
s1
p(s1)

[
−DKL

(
πα(a1|s1)

∥∥∥ eαQ(s1a1)

eαV (s1)

)
+ αV (s1)

]
,

(15)

which is minimized when πα(a1|s1) = eαQ(s1a1)/eαV (s1), with the optimal policy distribution π∗(a1|s1) ∝
eQ(s1a1)/eV (s1).Therefore, the recursions at a generic time step t are

Q(StAt)1(stat) = log p(at) +R(stat)

+
∑
st+1

p(st+1|stat)VSt+1
(st+1),

VSt(st) =
1

α
log
∑
at

eαQ(StAt)
1 (stat),

with the optimal policy distribution:
π∗(at|st) ∝ eQ(stat)−V (st).
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