10,240 research outputs found

    Optimization of Stone Cutting Techniques for the Seismic Protection of Archaeological Sites

    Get PDF
    Since the beginning of civilization, history tells of the movement of art pieces, monuments and manufacts from site to site. The causes are multiple: the displacements due to the "spoils of war", ordered by kings and emperors, the movements caused by the need for reuse, especially in the early Christian period, and so forth. Considerations about the events of the past, yield a possible strategy to transform this concept into a technique for earthquake prevention of archaeological sites. The seismic safety retrofits have often proven to be scarcely effective, because of the difficulties involved in complex sites. The aim of this study is to analyze an "alternative" method of preventing natural disaster like floods, eruption and earthquakes, through the movimentation of the most representative structural elements of archaeological sites by decomposition of the masonry and marbles [1]. The procedure considers a process of "cutting optimization," calibrated on the characteristics of the specific material that has to be cut and then displaced in safer places (i.e., MEP, "manufact evacuation plan"). This process should not create excessive problems to the structure, and aims to reassembly the manufact in contexts able to guarantee safety through advanced earthquake-resistant expedients. From these considerations, the work develops a procedure to safeguard the archaeological site of Pompei (Naples), through an appropriate analysis of representative portions of the site, aimed to a careful handling and to a proper reconstruction in a safe location, from the seismic point of vie

    Matrix algebras and displacement decompositions

    Get PDF
    A class xi of algebras of symmetric nxn matrices, related to Toeplitz-plus-Hankel structures and including the well-known algebra H diagonalized by the Hartley transform, is investigated. The algebras of xi are then exploited in a general displacement decomposition of an arbitrary nxn matrix A. Any algebra of xi is a 1-space, i.e., it is spanned by n matrices having as first rows the vectors of the canonical basis. The notion of 1-space (which generalizes the previous notions of L1 space [Bevilacqua and Zellini, Linear and Multilinear Algebra, 25 (1989), pp.1-25] and Hessenberg algebra [Di Fiore and Zellini, Linear Algebra Appl., 229 (1995), pp.49-99]) finally leads to the identification in xi of three new (non-Hessenberg) matrix algebras close to H, which are shown to be associated with fast Hartley-type transforms. These algebras are also involved in new efficient centrosymmetric Toeplitz-plus-Hankel inversion formulas

    Comparison of the TaqMan and LightCycler systems in pharmacogenetic testing: evaluation of the CYP2C9*2/*3 polymorphisms.

    Get PDF
    Background: Pharmacogenetic testing for drugmetabolizing enzymes is not yet widely used in clinical practice. Methods: In an attempt to facilitate the application of this procedure, we have compared two real-time PCRbased methods, the TaqMan_ and the LightCycler_ for the pharmacogenetic evaluation of CYP2C9*2/*3 polymorphisms. Results and Conclusion: Both procedures are suitable for pharmacogenetic studies. The TaqMan procedure was less expensive in terms of cost per sample, but the TaqMan apparatus is more expensive than the LightCycler apparatus

    Optimal rank matrix algebras preconditioners

    Get PDF
    When a linear system Ax = y is solved by means of iterative methods (mainly CG and GMRES) and the convergence rate is slow, one may consider a preconditioner P and move to the preconditioned system P-1 Ax = P(-1)y. The use of such preconditioner changes the spectrum of the matrix defining the system and could result into a great acceleration of the convergence rate. The construction of optimal rank preconditioners is strongly related to the possibility of splitting A as A = P R E. where E is a small perturbation and R is of low rank (Tyrtyshnikov, 1996) [1]. In the present work we extend the black-dot algorithm for the computation of such splitting for P circulant (see Oseledets and Tyrtyshnikov, 2006 [2]), to the case where P is in A, for several known low-complexity matrix algebras A. The algorithm so obtained is particularly efficient when A is Toeplitz plus Hankel like. We finally discuss in detail the existence and the properties of the decomposition A = P+R+E when A is Toeplitz, also extending to the phi-circulant and Hartley-type cases some results previously known for P circulant

    Matrix algebras in quasi-newtonian algorithms for optimal learning in multi-layer perceptrons

    Get PDF
    In this work the authors implement in a Multi-Layer Perceptron (MLP) environment a new class of quasi-newtonian (QN) methods. The algorithms proposed in the present paper use in the iterative scheme of a generalized BFGS-method a family of matrix algebras, recently introduced for displacement decompositions and for optimal preconditioning. This novel approach allows to construct methods having an O(n log_2 n) complexity. Numerical experiences compared with the performances of the best QN-algorithms known in the literature confirm the effectiveness of these new optimization techniques

    A variation of Broyden Class methods using Householder adaptive transforms

    Full text link
    In this work we introduce and study novel Quasi Newton minimization methods based on a Hessian approximation Broyden Class-\textit{type} updating scheme, where a suitable matrix B~k\tilde{B}_k is updated instead of the current Hessian approximation BkB_k. We identify conditions which imply the convergence of the algorithm and, if exact line search is chosen, its quadratic termination. By a remarkable connection between the projection operation and Krylov spaces, such conditions can be ensured using low complexity matrices B~k\tilde{B}_k obtained projecting BkB_k onto algebras of matrices diagonalized by products of two or three Householder matrices adaptively chosen step by step. Extended experimental tests show that the introduction of the adaptive criterion, which theoretically guarantees the convergence, considerably improves the robustness of the minimization schemes when compared with a non-adaptive choice; moreover, they show that the proposed methods could be particularly suitable to solve large scale problems where LL-BFGSBFGS performs poorly

    Low complexity secant quasi-Newton minimization algorithms for nonconvex functions

    Get PDF
    In this work some interesting relations between results on basic optimization and algorithms for nonconvex functions (such as BFGS and secant methods) are pointed out. In particular, some innovative tools for improving our recent secant BFGS-type and LQN algorithms are described in detail

    On the best least squares fit to a matrix and its applications

    Get PDF
    The best least squares fit L_A to a matrix A in a space L can be useful to improve the rate of convergence of the conjugate gradient method in solving systems Ax=b as well as to define low complexity quasi-Newton algorithms in unconstrained minimization. This is shown in the present paper with new important applications and ideas. Moreover, some theoretical results on the representation and on the computation of L_A are investigated

    Adaptive matrix algebras in unconstrained minimization

    Get PDF
    In this paper we study adaptive L(k)QNmethods, involving special matrix algebras of low complexity, to solve general (non-structured) unconstrained minimization problems. These methods, which generalize the classical BFGS method, are based on an iterative formula which exploits, at each step, an ad hocchosen matrix algebra L(k). A global convergence result is obtained under suitable assumptions on f

    Endogenous testicular D-aspartic acid regulates gonadal aromatase activity in boar testis.

    Get PDF
    D-aspartic acid (D-Asp), aromatase enzyme activity and the putative D-Asp involvement on aromatase induction have been studied in the testis of mature boars. The peroxidase-antiperoxidase and the indirect immunofluorescence methods, applied to cryostat and paraffin sections, were used to evaluate D-Asp and aromatase distributions. D-Asp level was dosed by an enzymatic method performed on boar testis extracts. Biochemical aromatase activity was determined by in vitro experiments carried out on testis extracts. D-Asp immunoreactivity was found in Leydig cells, and, to a lesser extent, in germ cells. Analogously, aromatase immunoreactivity was present in Leydig cells, but absent from seminiferous tubule elements. In vitro experiments showed that the addition of D-Asp to testicular tissue acetone powder induced a significant increase of aromatase activity, as assessed by testosterone conversion to 17beta-estradiol. Enzyme Km was not affected by D-Asp (about 25 nM in control and D-Asp added tests). These findings suggest that D-Asp could be involved in the local regulation of aromatase in boar Leydig cells and intervenes in this organ's production of estrogens
    • …
    corecore