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Chapter 3

ON THE BEST L EAST SQUARES FIT TO A M ATRIX

AND I TS APPLICATIONS

Carmine Di Fiore�, Stefano Fanelliyand Paolo Zelliniz
Università di Roma “Tor Vergata”,

Via della Ricerca Scientifica 1, 00133 Roma, Italy

Abstract

The best least squares fitLA to a matrixA in a spaceL can be useful to improve the
rate of convergence of the conjugate gradient method in solving systemsAx = b as
well as to define low complexity quasi-Newton algorithms in unconstrained minimiza-
tion. This is shown in the present paper with new important applications and ideas.
Moreover, some theoretical results on the representation and on the computation ofLA are investigated.

1 Introduction

In this paper the concept of matrix approximation is linked to a general strategy or to an idea
which has been proposed in a number of previous papers and tested for several problems
of numerical linear algebra and numerical optimization. The idea is simply the following
one: reduce a computational problem involving linear operators non sufficiently structured
to a framework where only matrices with a special structure are present, and where the
essential computation consists, finally, in a small number of fast transforms. This reduction
has been used in different contexts, and is turned out to be aneffective tool for analyzing
the complexity and improving the efficiency of algorithms. For instance, the very special
properties of matrix algebras of Jacobi type are used in [7] to calculate the eigenvalues of
symmetric Toeplitz matrices and in [8], [47] to find the multiplicative complexity of a set of
Toeplitz bilinear forms. Circulant, Jacobi, and Hartley-type matrices are usually exploited
in preconditioning techniques [42], [18], [9], [16], [21],[30]. In displacement theory [39],�E-mail address: difiore@mat.uniroma2.ityE-mail address: fanelli@mat.uniroma2.itzE-mail address: zellini@mat.uniroma2.it
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Figure 1: The graphic ofkL(p)T � Tk2F : Hartley is not optimal

[38], one can solve a linear systemAx = b by representingA�1 as the sum of a small
number of products of matrices belonging to Hessenberg [29], [12], or more general [23],
[4], algebras. Finally, in quasi-Newton algorithms for unconstrained minimization, a crucial
reduction of (time and space) complexity is obtained by iterations involving special Hessian
approximations diagonalized by fast transforms [25], [11].

The reduction of non sufficiently structured problems to structured ones is performed
via matrix approximation in Frobenius norm, i.e. by replacing a matrixA by its best least
squares (l.s.) fitLA, where the matrixLA belongs to a fixed algebraL. Part of the paper is
devoted to a review and to a further investigation of previous results obtained in [30], [25].
Moreover, several new results, applications and ideas are presented.

The seed of the research which finally resulted in [30] and then in [25], consisted in the
graphic of Figure 1. It represents the error in approximating a 3 � 3 symmetric Toeplitz
matrix T = (ti�j) in a classL(p), p 2 R, of matrix algebras studied in [23], or, more
precisely, the rational function in the equalityminX2L(p) kX � Tk2F � kL(p)T � Tk2F = 10p2 + 4p+ 49(p2 + p+ 1) (t1 � t2)2; p 2 R; (1:1)
wherekXkF =ptr(X�X) is the Frobenius norm ofX.

The Hartley algebraH, previously introduced in [9], is a member ofL(p), and corre-
sponds to the valuep = �1=2. In [9] it is shown thatHT , i.e. the best least squares (l.s.)
fit to T in H, can be an efficient preconditioner in solving Toeplitz systemsTx = b by the
conjugate gradient (CG) metod. Figure 1 shows clearly thatT can be approximated better
by picking up in the classL(p) an algebra different fromH = L(�12) and precisely the
new matrix algebra� = L(0). This obviously suggested the study of�T and other matricesL(p)T as new preconditioners.

The contents of this paper are described here below.
In Section 2, we point out the main properties of the best least squares fitLA to an�n

matrixA. Some of the remarks included are new and all of them are useful in computingLA. Several examples and problems are reported. Two possible applications ofLA are
considered in the next sections.
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In Section 3,LA is exploited as a preconditioner in solving positive definite linear
systemsAx = b by theCG method. The spaceL is a diagonal spacesd U = fUd(z)U� :z 2 C ng, i.e. P�1Ax = P�1b; P = LA = Ud(zA)U�
whereU is a unitary matrix andd(z) = diag(zi; i = 1; : : : ; n). In particular,L can be the
algebraH, the algebra� or, more in general, aHartley-typematrix algebra. Recall that the
set of Hartley-type algebras was proposed in [10] as the Hartley counterpart of the known
classification of Jacobi transforms/algebras. Theoretical and numerical results on the use
of LA as a preconditioner are reported in the casesA = T , T=symmetric Toeplitz [30] andA = T TT , T=generic (non symmetric) Toeplitz.

In Section 4,LA is involved in a novel low complexity quasi-Newton procedure for the
unconstrained minimization of a functionf : Rn ! R. The new algorithm is based on the
following approximation of the Hessianr2f(xk+1) in terms of the updating function (4.1):Bk+1 = '(Ukd(v)U�k ; sk;yk); sk = xk+1 � xk; yk = rf(xk+1)�rf(xk)
where the unitary matrixUk and the vectorv are defined in terms ofsk�1, yk�1 and a
suitable vectorw as follows:

1. w is such thatUk�1d(w)U�k�1 = Lk�1Bk with Lk�1 = sd Uk�1,
2. Uk is such thatUkd(z)U�k sk�1 = yk�1 for some vectorz close tow, and

3. v = w or v = z.

Item (1) implies that the eigenvalues of the matrixAk := Ukd(w)U�k are strictly related
to the eigenvalues ofBk and can be easily calculated. By item (2) the structure ofLk =fUkd(z)U�k : z 2 C ng is such thatA0k := Ukd(z)U�k shares withBk the property of
mappingsk�1 into yk�1. Thus, the updated matrix,Ukd(v)U�k , inherites fromBk both
spectral and structural properties. Moreover, since iterations involve onlyv and sinceUk
is the product of two Householder matrices, all computations can be written in terms of
single indexed arrays only. Thus,O(n) arithmetic operations per step andO(n) memory
allocations are sufficient to implement the algorithm. So, the most significant properties
of theLQN methods [25], [11], [24], and of the more recentLkQN methods [27] are
inherited by the new algorithm.

2 The Best Least Squares Fit to a Matrix

Let J1; J2; : : : ; Jm bem linearly independentn � n matrices and consider them � m
hermitian matrixB with entriesbij = (Ji; Jj) = nXr;s=1 [Ji℄rs[Jj ℄rs: (2:1)

From the identity x�Bx = nXr;s=1 ������ mXj=1 xj [Jj ℄rs������2 ; x 2 Cm ; (2:2)
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one deduces thatB is a hermitian positive definite matrix.

Problem 1: Given am�m hermitian positive definite matrixB, is it possible to definem linearly independentn� n matricesJ1; J2; : : : ; Jm such that(Ji; Jj) = [B℄ij?
The matrixB in (2.1) arises when calculating thebest least squares (l.s) fitto a matrixA in the spaceL spanned by theJk, i.e. when solving the following

Problem 2.1 Find the complex numbers�k for whichk mXk=1�kJk �AkF � k mXk=1 �kJk �AkF ; 8�k 2 C ; (2:3)
whereA is any fixedn� n matrix andk � kF is the Frobenius norm.

In fact, by the Hilbert projection theorem, Problem 2.1 is well posed, i.e. there is
a unique vector� = [�1 �2 � � � �m℄ satisfying the inequality (2.3) or, equivalently, the
orthogonality conditions(Ji; mXk=1�kJk �A) = 0; i = 1; : : : ;m: (2:4)

Such vector� is � = B�1; i = (Ji; A) = nXr;s=1 [Ji℄rs[A℄rs: (2:5)
Moreover, sincekPnk=1 �kJk � Ak2F = ��B� � 2Re(��) + kAk2F , one has the

following expressions for the errork nXk=1�kJk �Ak2F = kAk2F � ��B� = kAk2F � k nXk=1�kJkk2F : (2:6)
Finally, observe that ifA is real (hermitian), then also

Pnk=1 �kJk is real (hermitian),
provided thatJk = Jk (J�k 2 SpanfJ1; : : : ; Jng).

Thus the computations required in order to solve Problem 2.1are:

1. Calculate the inner productsi = (Ji; A)
2. CalculateB and solve the systemBz = 

The error may be calculated via (2.6).

Definition 2.2 Call LA the matrix
Pmk=1 �kJk satisfying(2.3), (2.4). We have obviouslyLA = mXk=1[B�1℄kJk: (2:7)
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Example 1. An n-dimensional spaceL often used in numerical linear algebra is the
space� = SpanfJ1; : : : ; Jng where

Jk =
26666666666666666666664
0 � � � � � � 0 1 0 � � � � � � � � � 0
... .. . 1 0 1 .. .

...
... . .

.
..

.
. .

. 1 . . .
.. .

. . .
...0 1 .. . . . . .. . .. . . . . . . .
...1 0 1 .. . . . . 1 00 1 .. . . . . 1 0 1

...
. . . .. . . . . .. . .. . . . . 1 0

...
.. . . . . .. . 1 .. . . . . . . .

...
...

. . . 1 0 1 . . .
...0 � � � � � � � � � 0 1 0 � � � � � � 0

37777777777777777777775
with eT1 Jk = eTk . For the definition and the first applications of� see [3], [47], [48], [7],
[8]. Notice thatJk = Jk�1J2 � Jk�2, J1 is the identity matrixI andJn is the reversing
matrixJ . Forn = 4 one calculatesB = 2664 4 0 2 00 6 0 22 0 6 00 2 0 4 3775 ; B�1 = 110 2664 3 0 �1 00 2 0 �1�1 0 2 00 �1 0 3 3775 : (2:8)

It follows that the best approximation ofA in � = SpanfJ1; J2; J3; J4g isP4k=1 �kJk = 110 [(31 � 3)J1 + (22 � 4)J2+(23 � 1)J3 + (34 � 2)J4; k = (Jk; A): (2:9)
Try for n = 5. �
Assume that the matrixLA = Pmk=1 �kJk is required in its explicit form, i.e. replace

Problem 2.1 with

Problem 2.3 Find the matrixLA in L = SpanfJ1; J2; : : : ; Jmg for whichkLA �AkF � kX �AkF ; 8X 2 L; (2:10)
whereA is any fixedn� n matrix.

If J 0k, k = 1; : : : ;m, arem linearly independent matrices inL, then one finds an
alternative representation ofLA:LA � mXk=1�kJk = mXk=1�0kJ 0k; �0 = B0�10; 0i = (J 0i ; A); [B0℄i;j = (J 0i ; J 0j):
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As a consequence, once the spaceL is fixed, one can try to look for a basisJk ofL for which the complexity of the inner products(Ji; A), i = 1; : : : ;m, is minimal or,
alternatively, for which the systemBz =  is easily solvable. The former requirement is
in general satisfied by choosingJk as sparse as possible. The latter requirement is fully
satisfied by introducing an orthonormal basis ofL; in fact, if B = I, then�k = k are
the Fourier coefficients ofA. Obviously one should be able to construct such orthonormal
basis by a simple procedure, instead of utilizing the Gram-Schmidt algorithm.

If the Jk span an algebraL of group matrices, then the computation of the best least
squares fit ofA in L has minimal complexity. This is shown, in the following example,
whenL = fcirculantsg.

Example 2. Let Jk be then� n matrix

Jk = 1pn
26666666666666664

0 � � � � � � 0 1 0 � � � 0
... 0 . .. . . .

...
...

. .. 1 00 . . . 11 0 00 1 .. .
...

...
. . . .. . . . .

...0 � � � 0 1 0 � � � � � � 0
37777777777777775

with eT1 Jk = eTk . Notice that
pnJk = (pnJ2)k�1, pnJ1 = I andJn = JT2 . For anyn

one calculatesB = I. Thus,CA = nXk=1�kJk = nXk=1 kJk; k = (Jk; A): (2:11)
Since the matricesJk are sparse and orthonormal, the computation of the best least

squares fit ofA in the algebraC = SpanfJ1; : : : ; Jng of circulant matrices has minimal
complexity. For an exhaustive treatise on circulant matrices see [19]. �

Notice, however, that circulants are not always the best approximations ofA. In partic-
ular, if T is a symmetric Toeplitz matrix, then there exist two algebras, � andH (see [30],
[9] and Section 3 of this paper), such thatk�T � TkF � kHT � TkF � kCT � TkF : (2:12)

The algebra� does not have a simple sparse orthonormal basis asC. However, if one
needs to use the approximationLT as a preconditioner of the Toeplitz linear systemTx =b, a little more effort in computingLT is widely justified by a better approximation level
of T . In fact, the rate of convergence of the conjugate gradient method applied toTx = b
preconditioned byLT will be intuitively greater forL = � than forL = C. A formula for�T is obtained in [30]. The inequality (2.12), found in [30], also states that Hartley is not
optimal for all values ofn, thereby extending the remark of Figure 1 (regarding the case
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Best least squares fit inL 2 V
WhenL is a space of matrices simultaneously diagonalized by a unitary transformU ,

some well known properties ofLA, such as the fact thatLA inherites the positive definite-
ness fromA, are shown in [43], [36], [41]. Now the same properties hold in the more
general case whereL has a suitableV-structure [30] (see for example Theorem 2.6). This
structure let us also obtain alternative representations of B (defined in (2.1)) especially
useful in computingLA.

We say precisely thatL is aV space (orL belongs to the classV) if there exist a vectorv and a basisfJ1; J2; : : : ; Jng of L such thatvTJk = eTk : (2:13)
A result proving thatV represents a significant class of matrix spaces is the fact that a

matrixX is nonderogatory iff the set of all polynomials inX is a space of classV [30].
Observe that two matricesA1, A2 of L 2 V for which vTA1 = vTA2, are equal.

This is a sort of generalization of the assertion that two circulant matrices with the same
first row are equal. The matrixA = Pnk=1 zkJk is denoted byLv(z), and the row vectorvTA = zT = [z1 z2 � � � zn℄ is called thev-row ofA. Forv = e1 simply setL(z) = Le1(z);
soC(z) denotes the circulant matrix with first rowzT .

Problem 2: Given another basisJ 0k of L, is it possible to introduce a vectorv0 such thatv0TJ 0k = eTk ?

Lemma 2.4 Assume thatL 2 V is a matrix algebra, i.e.JiJj 2 L, 8i; j, andI 2 L, whereI is the identity matrix. IfA 2 L is invertible, thenA�1 = Lv(z), zTA = vT , i.e. L is
closed under inversion.

Proof. Let z be such thatzTA = vT . SincevTLv(z)A = vT I, one has the equalityLv(z)A = I. �
Theorem 2.5 LetL be a space of classV and letv 2 C n , Jk 2 L satisfy(2.13). LetPk
be then � n matrices defined by the identitieseTk Ps = eTs Jk and satisfying the equalityP vkPk = I.

Assume thatL is a matrix algebra closed under conjugate transposition.
(i) We have B = nXk=1(trJk) �Pk: (2:14)
(ii) If vk = tr Jk, i.e.[ tr J1 � � � trJn ℄Jk = eTk ; k = 1; : : : ; n; (2:15)

then fJkg = orthonormal basis, i.e.B = I: (2:16)
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(iii) If L is commutative, i.e.JiJj = JjJi, 8i; j, thenJk = Pk andB = nXk=1(trJk) �Jk; (2:17)
so both �B and �B�1 are matrices ofL.

Proof. Exploit the definition ofB to obtain the equality[B℄ij = Pnr=1[JjJ�i ℄rr. The
closure under conjugate transposition and under multiplication ofL implies thatJjJ�i =Pnk=1 akJk for someak 2 C . Finally, by condition (2.13), one hasak = [J�i ℄jk = [ �Pk℄ij ,
and the representation ofB in (2.14) is proved. Assertions (ii) and (iii) follow easilyfrom
assertion (i). �

As it is shown in the following Example 3 in the caseL = � , the computation of� = B�1 can be simplified by using the information onB found in Theorem 2.5.

Example 3. In solving the exercise of Example 1, one observes thatB = 266664 5 0 3 0 10 8 0 4 03 0 9 0 30 4 0 8 01 0 3 0 5
377775 ; B�1 = 112 266664 3 0 �1 0 00 2 0 �1 0�1 0 2 0 �10 �1 0 2 00 0 �1 0 3

377775 : (2:18)
Theorem 2.5(iii) forJk = �(ek) together with (2.8) and (2.18) allows to deduce the

explicit form ofB andB�1 for generic values ofn:B = nJ1 + (n� 2)J3 + � � �+� Jn n odd2Jn�1 n even
; B�1 = 12n+ 2(3J1 � J3):

The inverse ofB is obtained from the equality12n+ 2[3 0 � 1 0 � � � 0℄B = eT1
and from Lemma 2.4. Thus an expression of�A for n generic is obtained:�A = 12n+2h(31 � 3)J1 +Pn�1k=2(2k � k�2 � k+2)Jk+(3n � n�2)Jni; k = (Jk; A): (2:19)�

If the spaceL is such that there exist and can be easily computed matricesJk 2 L
satisfying the condition (2.15), thenLA is simply given by its Fourier expansionLA = nXk=1(Jk; A)Jk: (2:20)
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Example 4. The three matrices of the algebra�J1 = 1p8 24 1 1 �11 0 1�1 1 1 35 ; J2 = 1p8 24 1 0 10 2 01 0 1 35 ;J3 = 1p8 24 �1 1 11 0 11 1 �1 35 (2:21)
satisfy the identities vTJk = eTk ; k = 1; 2; 3;
wherevT = [trJ1 tr J2 tr J3℄. So, by Theorem 2.5(ii), they define an orthonormal basis
of � . Thus, forn = 3, an expression of�A alternative to (2.19) holds:�A = (J1; A)J1 + (J2; A)J2 + (J3; A)J3; Jk = �v(ek):

The matrices (2.21) can be obtained also by applying the Gram-Schmidt procedure to
the three� matricesM1 = 24 1 1 �11 0 1�1 1 1 35 ; M2 = 24 2� z 1� z z1� z 2 1� zz 1� z 2� z 35 ;M3 = 24 x+ 2y � 4 y xy 2x+ 2y � 4 yx y x+ 2y � 4 35 :

In fact, M1 = p8J1;M2 � (J1;M2)J1 = p8J2;M3 � (J1;M3)J1 � (J2;M3)J2 = p8J3:�
Problem 3: Is it possible to define via (2.15) an orthonormal basis of� for all n?

Problem 4: Under what assumptions onL 2 V there exist matricesJk in L satisfying
the conditions (2.15)?

The representation (2.17) ofB = ((Ji; Jj))ni;j=1 holds under assumptions less restric-
tive thanJiJj = JjJi, 8i; j. Consider, in fact, a setfJ1; J2; : : : ; Jng of linearly indepen-
dent matrices (not necessarily spanning aV space). Then, by the definition ofB,[B℄ij = nXr;s=1 [Ji℄rs[Jj ℄rs = nXr;s=1[J�i ℄sr[Jj ℄rs = nXs=1[J�i Jj ℄ss:

Thus the identityB = Pnk=1(trJk) �Jk holds iff tr(J�i Jj) = tr�Pnk=1 [Jk℄i;jJk�. In

particular, the latter condition is satisfied ifJ�i Jj = nXk=1 [Jk℄i;jJk; 1 � i; j � n: (2:22�1)
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Now, (2.22�1) together with the conditionI = nXk=1 vkJk; for somevk 2 C ; (2:22�2)
implies thatvTJk = eTk , v = [v1 v2 � � � vn℄T , i.e. L = SpanfJ1; : : : ; Jng is a member
of V. The following Theorem 2.6 proves that the conditions (2.22*), or, equivalently, the
assumptionL=*space [30], imply several other properties onL andLA.

Theorem 2.6 Assume thatn linearly independentn � n matricesJ1; : : : ; Jn satisfy the
conditions(2.22*). Then the *spaceL = SpanfJ1; J2; : : : ; Jng has the following proper-
ties:

(i) vTJk = eTk , k = 1; : : : ; n, where
Pnk=1 vkJk = I; i.e. L 2 V.

(ii) L is a matrix algebra.
(iii) L is closed under conjugate transposition.

Moreover, we have:
(iv) If B = ((Ji; Jj)), thenB = nXk=1(trJk) �Pk = nXk=1(tr Jk) �Jk (2:23)

i.e. �B and �B�1 are inL.
(v) If k = (Jk; A) andz 2 C n , thenz�Lv()z =Pnk=1[P �k z℄�A[P �k z℄.
(vi) If A = A�, thenLA = LA� andmin�(A) � �(LA) � max �(A). In particular,A hermitian positive definite) LA hermitian positive definite: (2:24)
Proof. See [30]. �

Problem 5: Is it possible to extend the class of spacesL for which (2.24) holds? (Notice
thatL must be at least closed under conjugate transposition.)

Group matrix algebras represent an important class of *spaces. Before [30], it was
known that ifL = C � fcirculantsg, then the matrixLTTT , T =Toeplitz non singular,
inherites positive definiteness fromT TT . Now, after [30], we know that this is true for any,
commutative or non commutative, group matrix algebraL. Moreover, the following ex-
ample shows that computingLTT T , L = fdihedral group matricesg, is not more expensive
than computingCTTT .

Example 5(Appendix notation). In the Appendix it is shown that ifT = (ti�j)n�1i;j=0 is a
generic Toeplitz matrix andI(er) is the Toeplitz matrix with[I(er)℄0k= Ækr, [I(er)℄k0= 0,
then all inner products(I(er); T TT ), (JI(er); T TT ), (I(er)T; T TT ), (JI(er)T; T TT ),r = 0; : : : ; n� 1; where J = 266666664 0 � � � � � � 0 1

... . .. 1 0

... .. . . .. . . .
...0 1 . ..
...1 0 � � � � � � 0
377777775 ; (2:25)
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can be computed withO(n logn) arithmetic operations (see also [41]). As a consequence,
the time complexity of the computation of the Fourier coefficients k = (Jk; T TT ) in
equalityCTT T = P kJk, Jk = C( 1pnek) (see (2.11)) is at mostO(n logn). However,

the same result holds in computingk = (Jk; T TT ) in DTT T = P kJk, whereJk =D( 1pnek) represent the obvious (orthonormal) basis of the dihedral group algebraD = �� X JYJY X � : X;Y n2 � n2 circulants

� :
The proof is based on the equalityT TT = � T T1 T1 + T T3 T3 T T1 T2 + T T3 T1T T2 T1 + T T1 T3 T T2 T2 + T T1 T1 � ;

whereTi are then2 � n2 Toeplitz matrices defined byT = � T1 T2T3 T1 � ;
and on the remark that the matricesJk can be written in terms of matricesI(er), JI(er),I(er)T , JI(er)T of ordern and n2 (the details are left to the reader).�

There is a class of *spaces which is associated with the set ofthen�n unitary matrices.
More precisely, if then� n matrixU is such thatU� = U�1, then the commutative matrix
algebra L = sd U := fUd(z)U� : z 2 C g; d(z) = diag(z1; z2; : : : ; zn);
is a *space, and thus all conclusions in Theorem 2.6 hold [30]. A collection of useful results
onLA and on its properties whenL = sd U , is given in the following

Theorem 2.7 LetU be an�n unitary matrix and letL = sd U be the space of all matrices
simultaneously diagonalized byU . LetLA = Ud(zA)U� denote the best l. s. fit toA in L.
Then

(i) If A = A� thenLA = LA� andmin�(A) � (zA)i � max�(A)
(ii) LA is hermitian positive definite whenever A is hermitian positive definite. If, in

particular, L is spanned by real matrices, thenLA is real symmetric positive definite (pd)
whenever A is real symmetric positive definite (pd).

(iii) LA = Ud(zA)U�, (zA)i = (U�AU)ii, i = 1; : : : ; n.
(iv) zxyT = d(U�x)UTy, x; y 2 C n .
(v) trA = trLA.
(vi) If A is hermitian positive definite, thendetA � detLA.

Proof. The representation in (iii) is a simple consequence of the equality kUd(z)U� �AkF = kd(z) � U�AUkF . Notice that (i) and (ii) follows from Theorem 2.6 as well as
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from theLA representation in (iii). Items (iv), (v) and (vi) follow from (iii). In particular, ifA is hermitian positive definite, then, by the Hadamard inequality, we havedet(LA) = det d(zA) � det(U�AU) = det(A):�
A very useful representation ofLA, L = sd U , is obtained by exploiting the fact thatL

is in V. In fact, for anyv 2 C n such that[UTv℄i 6= 0, 8i, the matrices of the spaceL can
be represented as Lv(z) = Ud(UT z)d(UTv)�1U�; z 2 C n (2:26)
(see Proposition 2.4 in [30]). So, given a vectorv 2 C n such that[UTv℄i 6= 0 8i, if thev-row ofLA, i.e. vTLA, is given, thenLA = Ud(UTLATv)d(UTv)�1U� = Ud(UTB�1)d(UTv)�1U� (2:27)
where the latter identity holds if the basisJk of L is defined byJk = Lv(ek).

Example 6. At the beginning of the next Section 3 it is shown that the matrix algebrasC and� aresd U spaces, i.e. satisfy the identitiesC = sd UC ; � = sd U� ;
for suitable unitary matricesUC andU� known as Fourier and sine transform, respectively.
Thus the following representations ofCA and�A hold:LA = ULd(UTLB�1)d(UTL e0)�1U�L; L = C; � (Jk = L(ek)) (2:28)
(alternative to (2.11) and (2.19)) which let one reduce computations involvingCA and�A to
fastFourier and sine discrete transforms, respectively (computable inO(n logn) arithmetic
operations). �
3 LA as a Preconditioner (A = T ,A = T TT whereT is Toeplitz)

Because of the structure of transforms and related algebrasinvolved in the present section,
it is convenient to introduce a general setting for diagonalspacesL where one can retrieve
the vectorz defining the information sufficient to define a matrixA 2 L. This vectorz
is equal to a linear combination of the rows ofA, that iszT = vTA, where for the most
known algebras (circulant,� , Hartley, Hessenberg)vT = eT0 = [1 0 � � � 0℄. To recall that
a matrixA 2 L is defined byzT = vTA one can use the symbolLv(z) instead ofA (see
[30] or the previous section), and, in particular, the symbol L(z) if v = e0. In order to
follow the notation in [10], suitable for fast transforms, the indeces in this section and in
the Appendix will run from0 to n� 1 (instead from1 to n).

Let UL be a unitary matrix and letL be the space of all matrices simultaneously di-
agonalized byUL, i.e. L = sd UL = fULd(z)U�L : z 2 C ng, d(z) = diag(zk; k =0; : : : ; n� 1). Choose a vectorv 2 C n so that the matrixLv(z) = ULd(UTL z)d(UTL v)�1U�L (3:1)
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is well defined. Notice thatvTLv(z) = zT . Thus, any matrixA of L is determined by the
vectorvTA, thev-row ofA. If v = e0, thenA 2 L is determined by its first row.

The formula (3.1) holds in particular forL = C�1 = the space ofn� n (�1)-circulant
matrices. Any(�1)-circulant matrix is determined by its first rowzT = [z0 z1 � � � zn�1℄T ,zk 2 C , via the formulaC�1(z) = n�1Xk=0 zkP k�1; P�1 = 26664 0 1

. . . 1�1 0 37775 : (3:2)
To see thatC�1 can be put in the form (3.1) setv = e0, UC1 = F andUC�1 = DF ,

whereD = diag(e�ij�=n; j = 0; : : : ; n� 1), i = p�1, andF is the Fourier matrixF = 1pn(e�i2�ij=n)n�1i;j=0
(prove (3.1) first forz = e1 and use (3.2)). Moreover, ifL is the Jacobi algebra� of
Section 2, equivalently defined as the set of all matricesX = (xij)n�1i;j=0 satisfying the
cross-sum condition xi�1;j + xi+1;j = xi;j�1 + xi;j+1 (3:3)
with xi;�1 = x�1;i = xi;n = xn;i = 0, then one can prove that (3.1) holds forv = e0 andU� =q 2n+1(sin (i+1)(j+1)�n+1 )n�1i;j=0.

Now letCS�1 andCSK�1 be, respectively, the spaces of all symmetric and skewsymmetric(�1)-circulant matrices, i.e.CS�1 = fX 2 C�1 : XT = Xg; CSK�1 = fX 2 C�1 : XT = �Xg;
and let casx denote the functionos x+ sinx. The Hartley matrix is defined byH = 1pn � cas

2ij�n �n�1i;j=0 :
The discrete Hartley transform of a vectorz, Hz, is computable inO(n logn) arith-

metic operations (a.o.), i.e. has the same computational complexity of the discrete Fourier
transformFz (see [13], [45]). Note thatH = UH with H = CS1 + JP1CSK1 whereJ is the
reversaln� n matrix, i.e.[J ℄ik = Æi;n�k�1 [9].

The matrixH can be naturally included in a set of eightHartley-type(Ht) matrices
[10]: H; HIT� ; KT = 1pn( cas(2i+1)j�n )n�1i;j=0; KT I�;K; KIT� ; G = 1pn( cas(2i+1)(2j+1)�2n )n�1i;j=0; GI� (3:4)
whereI� = 1p2 26664 p2 Ibn�12  Jbn�12 p2�Jbn�12  Ibn�12  37775 ; I� = 1p2 264 Ibn2  �Jbn2 p2Jbn2  Ibn2  375 :
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In the above definitionsIk (Jk) is the identity (reversal) matrix of orderk; moreover the
presence of the central row and column including

p2 depends on the oddness ofn.
EachHt transform can be reduced to a Hartley transform. In fact, ifRK andR are then� n symmetric orthogonal matricesRK = diag(os �k2 ) + diag(sin �k2 )JP1,R = diag(os 'k2 ) + diag(sin 'k2 )J ,

where�k = 2k�n , 'k = (2k+1)�n , k = 0; : : : ; n� 1, thenKT = HRK; G = RKT :
However,Ht radix-n2 splitting formulas hold foreachHt transformU = Un1n2 and

lead to factorizations ofUn, corresponding to factorizations ofn, in terms of sparse orthog-
onal matrices [10]. TheHt radix-2 splitting formulas are reported in the following

Proposition 3.1 [10] LetQn;2 be the even-odd (2-stride) permutation matrix defined byQn;2z = [z0 z2 � � � z2n�2 z1 z3 � � � z2n�1℄T ; z 2 C 2n :
(i) For U = H; KT , we haveU2n = 1p2 � I XI �X � � Un 00 Un �Qn;2;

whereX = RK for U = H andX = R for U = KT .
(ii) SetR� = diag(os 'k4 )� diag(sin 'k4 )J;~R� = diag(os �k4 )� diag(sin �k4 )JP�1:

For U = K; G, we haveU2n = 1p2 � X Y�YW XW � � Un 00 Un �Qn;2;
whereX = R+, Y = R�, W = J for U = G andX = ~R+, Y = ~R�, W = JP�1 forU = K.

The set of matrix algebrasL = sd UL, UL = Ht, can be also obtained:H = sd H = CS1 + JP1CSK1 ; � = sd (HIT� ) = CS1 + JP1CS1 ;Æ = sd KT = CS1 + JCSK1 ; � = sd (KT I�) = CS1 + JCS1 ;K = sd K = CS�1 + JP�1CSK�1 ; � = sd (KIT� ) = CS�1 + JP�1CS�1; = sd G = CS�1 + JCSK�1 ; � = sd (GI�) = CS�1 + JCS�1: (3:5)
Notice that the equality (3.1) holds for with v 6= e0 [30] since the condition[GT e0℄i 6= 0, 8i, is not verified in general.
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The algebrasH, �, Æ, �, K, �, , � represent theHt counterpart of the set of eight Ja-
cobi algebras (including� ) considered in [38]. However matrices from Jacobi algebrasare
polynomials in a symmetric tridiagonal matrix, whereas no simple nonderogatory matrix
generatingHt is known [23], [10]. The algebras listed in (3.5) can have different effects
in a number of applications, including displacement decompositions, preconditioning tech-
niques and newtonian algorithms for unconstrained minimization. SomeHt algebras have
been used in displacement and Bezoutian theory, i.e. as the factorsMi, Ni in matrix rep-
resentationsA = PMiNi [23], [4], [22], [33], [34]. ForA equal to the inverse of a
Toeplitz-plus-Hankel (T + H) matrix, the latter representations are the basis of efficient
directT +H linear systems solvers. In [33], [34] the matricesH,K,KT andG are namedHI , HII , HIII andHIV , respectively, and are used to represent Toeplitz-plus-Hankel Be-
zoutians. TheLQN minimization methods, recently introduced in [25], have been initially
implemented forL = H =Hartley algebra [26], [11]. Notice that the fourHt transformsH,K, KT andG have been introduced independently in [35].

TheHt algebrasH andK, �, � have been exploited in [9], [37] and in [30], respec-
tively, to define preconditioners in solving positive definite Toeplitz systemsTx = b,T = (tji�jj)n�1i;j=0, by the conjugate gradient (CG) method. It has been noticed that such
preconditioners, which are the best l.s. fitsHT , KT , �T and�T , approximateT better than
the T.Chan-Huckle fit(C�1)T [18], [36]. In fact, the latter matrix,(C�1)T , is a symmetric(�1)-circulant matrix andHt includes, by definition, symmetric(�1)-circulant matrices.
Moreover, amongHt, � and� yield the best approximations ofT [30]. The latter remark is
essentially based on the fact that� and� are the onlyHt algebras which are simultaneously
symmetric and persymmetric likeT . So, one obtains the inequalities (2.12) (C = C1) andk�T � TkF � kKT � TkF � k(C�1)T � TkF (3:6)
which justify the use ofHt matrices as preconditioners.

The following theorem reports explicit formulas for(C�1)T , KT and�T (n even), and
states that, at least for a class of positive definite Toeplitz matricesT , the eigenvalues ofL�1T T , L = C�1;K; �, areclusteredaround1. It follows (see [1], [2]) that such matricesLT can be efficiently used as preconditioners ofTx = b. Analogous results hold forL = C
[16], L = H [9], L = � [30].

Theorem 3.2 [30] a) LetT = (tji�jj)n�1i;j=0 be a symmetric Toeplitz matrix. Setsi = ti +tn�i, i = 0; : : : ; n � 1 (tn = �t0), andai = ti � insi, i = 0; 1; : : : ; n � 1. Notice thatsi = sn�i, an�i = �ai. Moreover, ifn is even, setb2k = 2n �Pbn4 j=k+1 s2j�1 + tn=2Æn=2;o� ; k = 0; 1; : : : ; bn4 ;b2k�1 = 2n �Pdn4 e�1j=k s2j + tn=2Æn=2;e� ; k = 1; : : : ; dn4 e;bn�j = �bj; j = 1; : : : ; n2 � 1; n2
whereÆn=2;e(o) = 1, if n=2 is even (odd), andÆn=2;e(o) = 0, if n=2 is odd (even). ThenLT = ULd(UTL z)d(UTL e0)�1U�L (3:7)
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where, fori = 0; : : : ; n� 1,zi = 8<: ai L = C�1ai + sin L = Kai + bn�i�1 L = �; n even:
b) If ftjg+1j=0 is a sequence of real numbers satisfying

P jtj j < +1 andT (n) is the Toeplitz

matrix T (n) = (tji�jj)n�1i;j=0, then the eigenvalues ofLT (n) � T (n), L = C�1, K, �, are
clustered around zero, i.e. for any fixed", 9 k" and�", �" � k", such that8n > �" at leastn� k" eigenvalues ofLT (n) � T (n) are in the interval(�"; ").

Moreover, if
P tjjjeij� > 0, 8� 2 [��; �℄, thenT (n) andLT (n) are pd, and the eigen-

values ofI �LT (n)�1T (n) are clustered around zero.

In the remaining part of this sectionLA, L = Ht, is proposed as a preconditioner ofCG in the case of non symmetric Toeplitz linear systems.
A way to solve the linear systemTx = b; det T 6= 0;

whereT is a generic (possibly nonsymmetric)n � n real Toeplitz matrixT = (ti�j)n�1i;j=0
andb 2 Rn , is to apply theCG method to the normal equationsT TTx = T Tb or, more
generally, to thepreconditionedsystem(TE�T )T (TE�T )y = (TE�T )T b; ETx = y (3:8)
whereE is a nonsingular matrix.

TheCG method applied to (3.8) will be calledCGP method, withP denoting the
preconditioning matrixEET . In fact, the coefficient matrix in the system (3.8) is similar
to P�1T TT for anyE such thatEET = P . Thus it is the choice ofP that influences the
distribution of the eigenvalues ofE�1T TTE�T = (TE�T )T (TE�T ) and therefore the
rate of convergence ofCG applied to (3.8) [1], [2], [16], [30].

At each step theCGP method requires two matrix vector products,Tz andT Tw (be-
sides a small number of inner products of complexityO(n)). These computations can be
performed withO(n logn) a.o., either by using the identities� Tzz0 � = C(t) � z0 � = p2nF̂d(F̂ t)F̂ � � z0 � ;� T Tww0 � = C(t)T � w0 � = p2nF̂d(Ĵ P̂1F̂ t)F̂ � � w0 � ;
whereC(t) is the circulant matrix with first rowtT = [t0 t�1 � � � t�n+1 0 tn�1 � � � t1℄ andF̂ , Ĵ , P̂1 are the Fourier, theJ and theP1 matrices of dimension2n (see (2.25) and (3.2)),
or by using the procedures in [41], [32], [38] in terms of realtransforms only. Moreover, inCGP a systemPz = w needs to be solved.

ClearlyCGP is well defined and more efficient thanCG applied to the linear systemT TTx = T Tb (which is in general outperformed by direct methods, havinga slow rate of
convergence) provided that
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1. P is pd (i.e. real symmetric positive definite);

2. P is computable in at mostO(n logn) a.o.;

3. Pz = w is solvable in at mostO(n logn) a.o.;

4. the spectrum ofP�1T TT is more “clustered” than the spectrum ofT TT .

Intuitively, in order to obtain the property 4, the matrixP should be a good ap-
proximation ofT TT . In this sectionP = LTTT , i.e. P is the best least squares fit
to T TT from suitable subspacesL of C n�n . This choice ofP is suggested in [41]
in the caseL is a Jacobi matrix algebra. The matrixLTTT is also studied in [14] forL = C � C1 � fn� n circulantsg. HereLTTT is shown to satisfy the conditions 1,2,3 for
five differentHt matrix algebrasL. However, by the same definition ofHt in terms ofCS�1
andCSK�1 , it will be clear that the latter result can be extended to alleightHt. InvolvingHt
instead ofC�1 is clearly justified sinceHt approximateT TT better than(�1)-circulants.
In fact, because(C�1)TT T 2 CS�1, we havekLTTT � T TTkF � k(C1)TT T � T TTkF ; L = H; �; Æ; �;kLTTT � T TTkF � k(C�1)TT T � T TTkF ; L = K; �; ; �: (3:9)

Regarding condition 4, some numerical experiences in Table1 prove thatCG(Ht)TT T
outperforms theCG(ITT T ) method and is competitive withCG(LTTT ) whereL is one
of the more widely exploited algebrasC, C�1 and the Jacobi� . Moreover, the general
framework here considered allows us to conclude that the conditions 1,2,3 hold also for
spacesL of matrices which are not simultaneously diagonalized by a unitary matrix. The
latter result is shown in detail in Example 5 of Section 2 whenL is the (non commutative)
dihedral group algebraD. Some related numerical experiments show the efficiency ofD as
preconditioner even for matrices whose structure is not so close to the four–block dihedral
frame.

Remark.In [17], [15] the choiceP = CTT CT (E = CTT ) is suggested, whereCT is the
best l.s. fit toT from the space of circulant matricesC:CT = 1n n�1Xk=0[(n� k)t�k + ktn�k℄P k1 :

However, for both Jacobi andHt matrix algebrasL the choiceP = LT TLT is not
recommended sinceLT is symmetric, even ifT is not (for the Jacobi case see [41]).�

Let us restrict the attention to spacesL = sd UL, whereUL defines a transform com-
putable inO(n log n) a.o.. Examples of such spaces areC�1, Jacobi [46] andHt. By
Theorem 2.7(ii), the condition 1 is satisfied forP = LTTT , L = C�1; Jacobi;Ht. The
conditions 2 and 3 are satisfied forP = LTTT provided that the vectora in the equalityLTTT = ULd(a)U�L is computable in at mostO(n logn) a.o.. The fast computation ofa is
shown by Potts and Steidl [41] in the Jacobi case. Here we extend the result to theHt case
and giveexplicit formulas fora. To this aim an expression for the vectora more convenient
thana = ([U�LT TTUL℄kk)n�1k=0 (see Theorem 2.7(iii)) is needed.
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Recall that ifA is a genericn � n matrix, v 2 C n is such that[UTL v℄i 6= 0, 8i, andJk = Lv(ek), L = sd UL, thenLA = ULd(a)U�L; a = d(UTL v)�1UTLB�1: (3:10)
In the following we give procedures for the computation ofB�1 in (3.10) in the casesL = �, v = e0, andL = , v = e0 + en�1. The latter choice ofv is justified by the

fact thatA 2  is always determined by itse0 + en�1-row ([UT (e0 + en�1)℄i 6= 0, 8i),
whereas there are values ofn for which eT0A, A 2 , does not defineA (some entries[UT e0℄i = [GT e0℄i are zero forn = 6+4r). We also give explicit formulas forB�1,L 2fC�1;H;K; �; �g, Jk = L(ek). The above procedures and formulas can be implemented
in O(n) a.o., provided that a fixed set of vectorsrA, ~rA, hA, ~hA is known. The components
of such vectors are the inner productsrk;A = (I(ek); A); ~rk;A = (I(ek)T ; A);hk;A = (JI(en�1�k)T ; A); ~hk;A = (JI(en�1�k); A); (3:11)k = 0; : : : ; n� 1, whereI(z) is the upper triangular Toeplitz matrix with first rowzTI(z) = 266664 z0 z1 � � � zn�10 z0 . ..

...
...

.. . . .. z10 � � � 0 z0
377775 (3:12)

(I(en) = 0). Observe thatrA = ~rJAJ = ~rAT ; ~rJA = JhA; hA = ~hJAJ = ~hJAT J : (3:13)
If A is generic, one needs to performO(n2) a.o. in order to compute the components

in (3.11). However, by Lemma 5.1 in the Appendix, ifA = T TT whereT is Toeplitz, thenrA, ~rA, hA, ~hA are computable inO(n logn) a.o.. So, one obtains the next Theorems 3.3,
3.5, and Corollary 3.8.

Computing�A
Theorem 3.3 The vectora = d(UT� e0)�1UT� B�1 in the equality�A=U�d(a)U�� , � =CS1 + JCS1 , A = T TT , is computable in at mostO(n log n) a.o.. So, the conditions 1, 2, 3
on preconditionersP of T TT are satisfied forP = �TTT .

Let us give a procedure for the computation ofB�1, Jk = �(ek). The matrixB�1
was computed in [30] by using the remark thatB�1 2 � (Theorem 2.6(iv)). In fact, ifT�1;�10;0 = 26666664 0 1 �11 0 11 . ..

. . .
. .. 0 1�1 1 0

37777775 ; e = 266666664 10101
...

377777775 ; o = 266666664 01010
...

377777775 ; (3:14)



On the Best Least Squares Fit to a Matrix and Its Applications 91

andB denotes the matrix((L(ei);L(ej)))n�1i;j=0, L 2 f�; �g, thenB�1 = 12n �2I � JT�1;�10;0 �� 1n2 �eeT + ooT � J(eoT + oeT )� (3:15)
where the upper and lower signs refer, respectively, to the casesL = � andL = � [30]. The
matrix vector productB�1 �  can be clearly calculated inO(n) a.o.. Thus, Theorem 3.3 is
proved if the vector is computable inO(n log n) a.o. forA = T TT .

A direct computation of = ((Jk; T TT ))n�1k=0 is not recommended because the matricesJk = �(ek) are not sparse. For example, by using the cross-sum conditions (3:3) withx�1;n�1�k = xk;n = xn;k = xn�1�k;�1 = x0;k (satisfied by any� matrixX [30]), one

can write�(en4 ) and realize that it hasn24 nonzero entries. In Lemma 3.4 we introduce a

basisfJ 0kg of � = CS1 + JCS1 where each matrixJ 0k can be written in terms of a constant
number of matricesI(ek), I(ek)T , JI(en�1�k)T , JI(en�1�k). The basisfJ 0kg is obtained
by grouping together the obvious basis ofCS1 andJCS1 and by omitting the surplus. As a
consequence, by Lemma 5.1 of Appendix, the vector0 = ((J 0k; T TT ))n�1k=0 is computable
in O(n log n) a.o.. The next Lemma 3.4 also provides some relations between fJ 0kg andfJkg which imply that is computable from0 in O(n) a.o.. So, Theorem 3.3 is proved.

Fork = 0; 1; : : : ; n setZk = I(ek) + I(ek)T + I(en�k) + I(en�k)T (3:16)
(I(en) = 0). Notice thatZ0 = 2I, Z1 = T 1;10;0 , Zj = Zj�1Z1 � Zj�2, j = 2; : : : ; n.

Moreover, the setfAkgbn2 k=0, A0 = 12Z0 = 12Zn, Ak = Zk = Zn�k, 1 � k � bn�12 ,An2 = 12Zn2 (n even), is the obvious basis ofCS1 .

Lemma 3.4 [31] The set ofn� n matricesfJ 0kg whereJ 0k = � Ak 0 � k � bn2 JAk�bn2 �1 bn2 + 1 � k � n� 1 (3:17)
form a basis of�. Moreover the basisfJkg, Jk = �(ek), can be expressed in terms of theJ 0k by the following identities:Jk = 8>><>>: J 00 = I k = 0Jk�2 + J 0k � J 0k+bn2  1 � k � bn�12  (J�1 = 0)J 0k k = n2 (n even)�Jn�k + J 0n�k bn2 + 1 � k � n� 1: (3:18)

Thus, for the vectors = ((Jk; A))n�1k=0 and0 = ((J 0k; A))n�1k=0 we havek = 8>><>>: 00 = trA k = 0k�2 + 0k � 0k+bn2  1 � k � bn�12  (�1 = 0)0k k = n2 (n even)�n�k + 0n�k bn2 + 1 � k � n� 1: (3:19)
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Proof. The setS = fAk; JAk : k = 0; : : : ; bn2 g generates�. Let n be odd. Since[Pn�12k=0 Ak℄ij = 1, 8i; j, we have
Pn�12k=0 JAk = Pn�12k=0 Ak and thusJAn�12 is a lin-

ear combination of the remaining matrices inS. Analogously, ifn is even, the identityJ(Pn2k=0;k evenAk) = Pn2k=0;k oddAk implies thatJAn2 andJAn2�1 are linear combina-
tions of the other matrices inS. In order to prove (3.18), it is sufficient to verify that the
first row of the matrices on the right hand-side are the vectors eTk , 0 � k � n� 1. �

Proof of Theorem 3.3(in detail). The vectora in the equality�TT T = U�d(a)UT� is
computable inO(n logn) a.o. by the following steps. Calculate the inner products vectors~rTT T = rTTT ,hTT T and~hTT T = hTTT by using formulas (5.1) and (5.2) in the Appendix.
ForA = T TT set0k =8>>>>>>><>>>>>>>:

r0;A k = 02(rk;A + rn�k;A) 1 � k � bn�12 2rn2 ;A k = n2 (n even)hn�1;A = ~hn�1;A k = bn2 + 1hn�k+bn2 ;A + ~hn�k+bn2 ;A+hk�bn2 �2;A + ~hk�bn2 �2;A bn2 + 2 � k � n� 1: (3:20)
Calculate from 0 and thenz� = B�1 by using, respectively, (3.19) and (3.14),

(3.15). Thena = d(UT� e0)�1UT� z�. �
ComputingA

Theorem 3.5 The vectora = d(UT (e0 + en�1))�1UT B�1 in the equalityTTT =Ud(a)U� ,  = CS�1 + JCSK�1 , is computable in at mostO(n log n) a.o.. So, the condi-
tions 1, 2, 3 on preconditionersP of T TT are satisfied forP = TT T .

Let us give a procedure for the computation ofB�1, Jk = e0+en�1(ek). Since the
matricesJk are dense and8n have not a simple explicit structure, a direct computation ofB�1 and is not recommended. However, the existence ofJk allows us to obtain a simple
expression ofB�1 in terms of a suitable vectorB0�10 whereB0�1, 0 andB0�1 � 0 are
easily computable.

Lemma 3.6 The set ofn� n matricesfJ 0kg whereJ 0k = � I k = 0C�1(ek � en�k) 1 � k � dn2 e � 1; (3:211)J 0dn2 e+k = � JC�1(ek+1 + en�k�1) 0 � k � dn2 e � 2JC�1(en=2) k = dn2 e � 1 (n even) (3:212)
form a basis of. Moreover, the basisfJ 0kg can be expressed in terms of the basisfJkg,Jk = e0+en�1(ek), by the following identities:J 0k = � J0 + Jn�1 k = 0Jk � Jk�1 + Jn�k�1 � Jn�k 1 � k � dn2 e � 1; (3:221)
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Proof. The obvious basis ofCS�1 andJCSK�1 are (3.211) and (3.212), respectively. Since

dim CS�1 + dim JCSK�1 = n, the union between (3.211) and (3.212) is a basis of. In order
to prove (3.22), observe that thee0 + en�1-row of the matrices on the right hand-side are
equal to thee0 + en�1-row of the matricesJ 0k andJ 0dn2 e+k. �

So,fJ 00; J 01; : : : ; J 0n�1g is a basis of and, therefore,A = n�1Xk=0[B0�10℄kJ 0k; b0ij = (J 0i ; J 0j); 0i = (J 0i ; A): (3:23)
Notice thatB0�1 = 12n(I + e0eT0 + Æneen�1eTn�1), whereÆne = 1, if n is even, andÆne = 0, if n is odd. Thus, the complexity ofB0�10 is determined by the complexity of0. By the particular form ofJ 0k, if A is generic,0 is computable inO(n2) a.o. and, ifA = T TT , in O(n logn) (see Lemma 5.1 of Appendix).
By (3.22) and by the identitiesJk = e0+en�1(ek) = Gd(Gek)d(w)G, wi = (G(e0 +en�1))�1i , the sum in (3.23) becomesA = [B0�10℄0J 00 +Pdn2 e�1k=1 [B0�10℄kJ 0k+Pdn2 e�2k=0 [B0�10℄dn2 e+kJ 0dn2 e+k + Æne[B0�10℄n�1J 0n�1= [B0�10℄0Gd(G(e0 + en�1))d(w)G+Pdn2 e�1k=1 [B0�10℄kGd(G(ek � ek�1 + en�k�1 � en�k))d(w)G+Pdn2 e�2k=0 [B0�10℄dn2 e+kGd(G(ek+1 � ek + en�k�1 � en�k�2))d(w)G+Æne[B0�10℄n�1Gd(G(en=2 � en=2�1))d(w)G:
Thus A = Gd(GB�1)d(G(e0 + en�1))�1G

withB�1 = TA(e0 + en�1) = [B0�10℄0(e0 + en�1)+Pdn2 e�1k=1 [B0�10℄k(ek � ek�1 + en�k�1 � en�k)+Pdn2 e�2k=0 [B0�10℄dn2 e+k(ek+1 � ek + en�k�1 � en�k�2)+Æne[B0�10℄n�1(en=2 � en=2�1)
i.e.B�1 is computable fromB0�10 in O(n) a.o.. This proves, in particular, Theorem 3.5.

Explicit formulas for(C�1)A, �A, �A,HA,KA,

The procedures illustrated above to computeLA are essentially based on representa-
tions of B�1 in terms of0 (L = �) or in terms ofB0�10 (L = ), where theJ 0k,
definingB0 and 0, are the sum of a constant number ofI(ek), I(ek)T , JI(en�1�k)T ,JI(en�1�k) matrices. In the following Theorem 3.7 we giveexplicit formulas forLA,L = C1; C�1; �; �;H;K. These formulas have been introduced heuristically and then rigor-
ously proved. Notice that only(C�1)A were previously considered in literature.
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Theorem 3.7 The best l.s. fit toA 2 C n�n fromL 2 fC�1;H;K; �; �g can be represented
as LA = ULd(UTL z)d(UTL e0)�1U�L; (3:24)
with z = B�1, Jk = L(ek), equal, respectively, tof�A = 1n(rA � JI(e1)~rA);12(f�A + f�AT ) + 12n [(I � JI(e1))hA�(I(e2)T � I(e1)J)~hA � (h0;A � ~hn�2;A)e0℄;12(f�A + f�AT ) + 12n(I � I(e1)J)(hA + ~hA)� 1n2 �eeT + ooT � J(eoT + oeT )� I 12 (rA + ~rA);
where the upper and the lower signs refer to the casesC1;H; � andC�1;K; �, respectively,
and I 12 = diag(12 ; 1; : : : ; 1), e = [1 0 1 0 � � � ℄T , o = [0 1 0 1 � � � ℄T . Moreover, forL = �; �, LA = (C�1)A+AT2 + J(C�1)JA+AJ2 + JR; R 2 CS�1
whereR = 0 if L = � andn is even.

Proof. Compute the vectorB�1 for Jk = L(ek). For example, ifL = C�1, thenJk = P k�1. Therefore[B�1℄k = 1n(P k�1; A) = 1n(rk;A � ~rn�k;A). The formulas forL = �; � are essentially obtained by rewriting in vectorial form some analogous results in
[30]. The formulas forL = H;K are new (in [9] only the formula forHT , T symmetric,
is obtained). In order to prove the equality involving(C�1)JA+AJ2 , observe that the latter

matrix belongs toCS�1 and use (3.13). �
It is clear, from Theorem 3.7, that the vectorB�1 is computable inO(n) a.o. provided

that the inner products in (3.11) are given. Then, the crucial remark in the analysis of the
complexity ofCGP method withP = (Ht)TT T (conditions 2 and 3) is that the computa-
tion in (3.11) can be performed in at mostO(n logn) a.o.. More precisely, forA = T TT
the formulas in Theorem 3.7 can be simplified by observing that T TT is symmetric andT
is persymmetric (JT = T TJ), and therefore, by (3.13), the identities~rTTT = rTT T and~hTT T = hTTT hold. Finally, the fact thatT is Toeplitz allows us to apply Lemma 5.1 of
Appendix and state the following

Corollary 3.8 The vectora = d(UTL e0)�1UTLB�1 in the equalityLTTT = ULd(a)U�L,L = C�1;H;K; �; �, is computable in at mostO(n logn) a.o.. So, the conditions 1, 2, 3 on
preconditionersP of T TT are satisfied forP = (C�1)TT T ,HTTT , KTTT , �TT T , �TTT .

Experimental results

We have applied theCG(LTTT ) method,L = I; �;H; C; �; C�1;K; �;D, to the systemTx = b = [1 1 � � � 1℄T for five different choices of the matrixT . The results are reported
in Table 1. IfL is the Jacobi algebra� , then�A can be expressed by (3.24) withL = � andz = 12n+ 2�(3e0 � e2)��1�; � = rA + ~rA � I(e2)T (hA + ~hA) (3:25)
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Table 1: Performance ofLTTT preconditionersL TI TII TIII TIV TVI 148 184 >128 >512 23 22 46 89 69 198� 24 23 73 283 6 6 10 10 41 78H 23 22 99 445 6 6 7 9 38 70C 17 19 94 453 6 6 8 9 33 63� 21 23 29 63 5 4 14 16 43 75C�1 18 19 94 446 6 6 11 14 35 65K 26 23 93 439 6 6 13 15 41 76� 26 25 71 269 6 5 13 16 46 80D 30 30 >128 >512 9 8 13 14 59 132

where� is the same matrix (5.3) of the Appendix. This result followsfrom the expression
of B�1, Jk = �(ek), found in Example 3 of Section 2. IfL is the dihedral group algebraD, then the first row ofDTTT can be computed by the formulas([DTT T ℄0k)n2�1k=0 = 1n(I + Ĵ I(ê1))(2rTT1 T1 + rTT2 T2+TT3 T3);([DTT T ℄0k)n�1k=n2 = 1n [�hk;TTT + h 32n�k�2;TTT�n�1k=n2�I(ê1)ĴhT1TT1 +T3TT3 � hTT1 T1+TT2 T2 ℄ (3:26)
where Ĵ and ê1 are the matrixJ and the vectore1 = [0 1 0 � � � 0℄T of dimensionn=2
(see Example 5 in Section 2). ByTI , TII , TIII we denote the three Toeplitz matricesT
considered in [41] in the points (i), (iii), (iv). The elements of the matricesTIV andTV are
defined by tIV0 = tV0 = 1; tIV�k = 1(k + 1)0:5 ; tV�k = 1j sinkj+ 1 ;tIVk = tVk = 1log(k + 1) + 1 ; k � 1:

Table 1 shows the number of steps required to satisfy the stopping criterionkT TTxk � T TbkkT Tbk < 10�7
(x0 = 0) for the two different dimensionsn = 128 andn = 512. Notice that the good
performance of� preconditioners, pointed out in [21] for�T , T = T T , seems to hold
also for�TTT , T non symmetric. But Table 1 also shows that circulant and Hartley type
preconditioners may be — in some cases — more efficient.
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4 An Efficient LkQN Algorithm for the Unconstrained
Minimization

In [25] the followingLQN procedure for the minimization of a functionf : Rn ! R is
introduced in terms of a subsetL of C n�n :x0 2 Rn ; B0 = pd n� n matrix:For k = 0; 1; : : : :8>>>><>>>>: dk = � �B�1k gk S�LBk�1gk NSxk+1 = xk + �kdk; �k 2 AGksk = xk+1 � xk; yk = gk+1 � gkBk+1 = '(LBk ; sk;yk) (LQN algorithm)
where pd means real symmetric positive definite,gk = rf(xk), AGk is the Armijo-
Goldstein setAGk = f � 2 R+ : f(xk + �dk) � f(xk) + 1�dTkrf(xk) &dTkrf(xk + �dk) � 2dTkrf(xk) g;0 < 1 < 2 < 1
[20], and' is the Hessian approximation updating function'(B; s;y) = B + 1sTyyyT � 1sTBsBssTB: (4:1)

We see that there are two possible definitions of theLQN search directiondk, in terms
of Bk and in terms ofLBk . The former leads to a Secant method, sinceBk solves the
secant equationXsk�1 = yk�1. The latter corresponds to a Non Secant one (LBksk�1 6=yk�1). Notice that ifBk = LBk (e.g. whenL = C n�n), then bothS andNS LQN
coincide with theBFGS algorithm, the well known quasi-Newton optimization procedure
with superlinear rate of convergence [20], [40].

If the setL satisfies the conditionB pd ) LB pd; (4:2)
then the aboveLQN algorithm is well defined and yields a strictly decreasing sequencef(xk) unlessgk = 0 for somek. In fact, by the structure of',Bk pd ) LBk pdsTk yk > 0 �) Bk+1 pd ) LBk+1 pd: (4:3)

The conditionsTk yk > 0 is satisfied since�k 2 AGk. The fact thatBk+1 andLBk+1
are pd guarantees thatdk+1 is a descent direction both in theS and in theNS case.

Now assume thatL = sd U for some unitary matrixU andL is spanned by real
matrices. These assumptions, because of Theorem 2.7(ii), guarantee that(4:2) holds and
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all vectorsdk are defined onR. TheLQN algorithm, written in terms ofU , becomesx0 2 Rn ; B0 = pd n� n matrix;U�d0 = � �U�B�10 g0 S�d(z0)�1U�g0 NS ;d0 = U(U�d0):F or k = 0; 1; : : : :8>>>>>><>>>>>>:
xk+1 = xk + �kdk; �k 2 AGksk = xk+1 � xk; yk = gk+1 � gk(4:41)� (4:42) S(4:43) NSdk+1 = U(U�dk+1)

where zk+1 = zk + 1sTk yk jU�ykj2 � 1zTk jU�skj2d(zk)2jU�skj2; (4:41)zk is the vectorzBk in the equalityLBk = Ud(zBk)U�, andU�dk+1 = 8>>>>>><>>>>>>: �d(z�1k )U�gk+1 + sTk gk+1yTk sk d(z�1k )U�yk+h��1 + (z�1k )T jU�ykj2yTk sk � sTk gk+1yTk sk+ (z�1k )T d(UT yk)U�gk+1yTk sk iU�sk; (4:42)�d(zk+1)�1U�gk+1: (4:43)
In (4.4), jzj (z�1) denotes the vector with elementsjzij (z�1i ). We have the following

results:

1. Each step ofLQN can be implemented by performing two products byU and a
constant number of vector inner products.

2. TheNS version ofLQN has a linear rate of convergence.

3. If U defines a fast discrete transform (cost ofU � z � O(n log n)), thenLQN can
be implemented withO(n) memory allocations andO(n logn) arithmetic operations
per step.

4. If U is the Hartley transform,Uij = 1pn(os 2�ijn + sin 2�ijn ), then theS version
of LQN shows a satisfactory rate of convergence in numerical experiences. TheS LQN method is, in fact, competitive with the limited memoryBFGS method (L-BFGS [40]) in solving large scale minimization problems.

The points (1) and (3) follow immediately from (4.41)-(4.43). In fact, the two transforms
areU� � gk+1 andU � (U�dk+1). The point (2) is proved in detail in [25], [28]. Some
experiments related to the behaviour of theS LQN method cited in (4) are illustrated in
[11].
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It is essential to notice that the iterationBk+1 = '(LBk ; sk;yk) is in fact reduced, in
theLQN algorithm, to the updating formula (4.41) involving the eigenvalues ofLBk andLBk+1 only, so that the entire computation runs in terms of single indexed arrays and the
space complexity is linear inn. Thus the introduction ofLQN methods has shown that
a significant amount of second order information, containedin the eigenvalueszk of LBk ,
can be sufficient to solve efficiently a minimum unconstrained problem of large dimension.
In other words, the information content ofLBk appears to be sufficiently close toBk in
order to maintain a quasi-newtonian rate of convergence.

In order to improve theLQN performance, aLQN algorithm where the spaceL is
modified at each step has been recently proposed in [27]. Moreprecisely, in [27] it is
considered a spaceLk � C n�n such that the setfX 2 Lk : X is pd andXsk�1 = yk�1g
is not empty andBk+1 is defined by updating a pd matrix ofLk:Bk+1 = '(Ak; sk;yk); Ak 2 Lk and pd: (4:5)

An obvious choice ofLk is Lk = sd Uk, whereUk is a unitary matrix satisfying the
inequalities (U�kyk�1)i(U�ksk�1)i � wi > 0; i = 1; : : : ; n; (4:6)
which is equivalent to say thatLk satisfies the secant equationUkd(w)U�k sk�1 = yk�1
and is pd. Numerical experiences withAk = Ukd(w)U�k in (4.5) (see [27]) show that
this criterion (change the spaceL at eachk and chooseUk in order that (4.6) holds) gives
good performances in comparison with the previousLQN method whereL is fixed. For
large scale problems, however, the choiceAk = Ukd(w)U�k does not give good results and
the reason is in the fact that the eigenvalueswi in (4.6) have, in general, no link with the
eigenvalues(U�kBkUk)ii of the best l.s. approximationLkBk . So, in the same paper [27] it
is suggested to setAk = LkBk and t ciaoLk (i.e. Uk) only when the condition (4.6) is not
verified (in order to maintain low the complexity per step).

In the following we try to restore a close relation of the updated matrixAk with the
Hessian approximationBk by using an alternative strategy: choosewi as the eigenvalues
of Lk�1Bk , in order to maintain theBk spectral information, and then chooseUk in order to
satisfy the secant equationUkd(w)U�k sk�1 = yk�1, w = (wi). This operation recalls,
in spirit, the distinction betweenstructureand information contentof a matrix [7], [48],
[8], [5], [6]: in the split L = Ud(z)U�, U is the same unitary transform for all matricesA of L (i.e. U w structure), whereasz defines a particular matrixA in the spaceL (z w
information content). The information contentw regains the correspondent information ofBk, whereas the structure defined byUk reproduces the fundamental structure of secant
methods.

TheBelle Epoquealgorithm

The generic step of the Belle Epoque algorithm is the following:

(�) Assume that, at a generic stepk, a positive definite matrixAk = Ukd(wk)U�k , Uk
unitary, and two vectorssk, yk, sTk yk > 0, are given. The matrixBk+1 = '(Ak; sk;yk) = Ak + 1yTk skykyTk � 1sTkAkskAksksTkAk (4:7)
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is positive definite. By projecting the equality (4.7) onLk = sd Uk and exploiting the
linearity of the operatorLB (L�B+�C = �LB + �LC), one obtains the vectorwk+1 of the
eigenvalues of the positive definite matrixLkBk+1 :wk+1 = wk + 1sTk yk jU�kykj2 � 1wTk jU�kskj2 d(wk)2jU�k skj2 (4:8)
where jzj denotes the vector with elementsjzij. Recall that the eigenvalues(wk+1)i ofLkBk+1 are related to the eigenvalues0 < �(k+1)1 � : : : � �(k+1)n ofBk+1 by the inequalities�(k+1)1 + : : : + �(k+1)r � (wk+1)i1 + : : :+ (wk+1)ir ;(wk+1)ir + : : :+ (wk+1)in � �(k+1)r + : : :+ �(k+1)n ; (4:9)
where the index-vectorfi1; i2; : : : ; ing is a permutation off1; 2; : : : ; ng defined so that(wk+1)i1 � (wk+1)i2 � : : : � (wk+1)in (see [44]). In particular, we have0 < �(k+1)1 � (wk+1)i1 � (wk+1)s � (wk+1)in � �(k+1)n (4:10)
(see also the previous Theorem 2.6(vi)). Now introduce a space Lk+1 with an ad hoc
structure for the current iteration, i.e. setLk+1 = sd Uk+1; Uk+1 unitary such thatUk+1d(wk+1)U�k+1sk = yk: (4:11)

Then the positive definite matrixAk+1 := Uk+1d(wk+1)U�k+1 solves the secant equa-
tion asBk+1, and has eigenvalues strictly related toBk+1 by (4.9) and (4.10).

Now set dk+1 = � �B�1k+1rf(xk+1) (I)�A�1k+1rf(xk+1) (II)
:

Sincedk+1 is a descent direction (unlessrf(xk+1) = 0), theAGk+1 set is not empty.
Thus, one can set xk+2 = xk+1 + �k+1dk+1; �k+1 2 AGk+1;sk+1 = xk+2 � xk+1;yk+1 = rf(xk+2)�rf(xk+1)
and observe thatsTk+1yk+1 > 0.

Finally setk := k + 1 and return to (�).
Notice that the Belle Epoque search directiondk+1 can be computed by exploiting the

formulas dk+1 = 8>>>>>><>>>>>>: Uk�� d(w�1k )U�kgk+1 + sTk gk+1yTk sk d(w�1k )U�kyk�+h��1 + (w�1k )T jU�kykj2yTk sk � sTk gk+1yTk sk+ (w�1k )T d(UTk yk)U�kgk+1yTk sk isk; (I)�Uk+1d(wk+1)�1U�k+1gk+1: (II)

(4:12)
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It follows that the time complexity per step of the Belle Epoque algorithm is determined
by the cost of matrix-vector products of typeUk � z andU�k � z, i.e.

Time complexity = O( ost(Uk � z) ) +O( ost(U�k � z) ) +O(n):
However, the Belle Epoque algorithm does not work in the present form, since the spaceLk+1 in (4.11) may be not defined. Belle Epoque works if (4.11) is replaced byLk+1 = sd Uk+1; Uk+1 unitary such thatUk+1d(�k+1 ~wk+1)U�k+1sk = yk

for suitable �k+1 > 0 and~wk+1 = "k+1wk+1 + �k+1e; ( ~wk+1)i > 0 (4:110)
wheree = [1 1 � � � 1℄T . In fact, as it is shown after the Remark 0 here below, a unitary ma-
trix Uk+1 solving (4.110) exists and is obtained as the product of two Householder matrices.
So, the time and space complexity of the working Belle Epoquealgorithm isO(n) only.

Notice that the matrixAk+1 = Uk+1d(wk+1)U�k+1 does not mapsk into yk . Thus the
Belle Epoque method corresponding to the direction (4.12)-(II), is not secant unlesswk+1
is replaced withzk+1 := �k+1 ~wk+1. So, a third Belle Epoque algorithm can be defined,
the one corresponding to the search directiondk+1 = �A0 �1k+1gk+1; A0k+1 := Uk+1d(zk+1)U�k+1: (III) (4:12)

Remark 0.By updatingA0k = Ukd(zk)U�k instead ofAk (i.e. by replacingAk with A0k
in (4.7), andwk with zk on the right hand side of (4.8) and of (4.12),(I) ), one obtains three
alternative versions (I)0, (II) 0, (III) 0 of Belle Epoque. Notice that in (I), (II), (III) the updated
matrix has the same eigenvalues ofLk�1Bk , but does not map exactlysk�1 into yk�1. On the
contrary, in (I)0, (II) 0, (III) 0 the updated matrix mapssk�1 into yk�1, but its eigenvalues are
a bit different from the eigenvalues ofLk�1Bk . �

Consider the following

Problem 4.1 Given a vectorw with positive entries and two vectorss, y, sTy > 0, find a
unitary matrixU , a scalar� > 0, and a vector~w = "w + �e, ~wi > 0, such thatUd(� ~w)U�s = y:

LetH(z) denote the Householder matrix corresponding to the vectorz, i.e.H(z) = I � 2kzk2 zz�; z 2 C n (4:13)
(H(0) = I). By using the following lemma (see [27]), one can reformulate Problem 4.1
into a simpler problem.

Lemma 4.2 Given two vectorss;y 2 Rnnf0g, let r; x 2 Rn be such thatkrkkxk 6= 0,
and the cosine of the angle betweenr andx is equal to the cosine of the angle betweens
andy, i.e. rTxkrkkxk = sTykskkyk =:p�: (4:14)
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Set u = s� y � � kskkrkr� kykkxkx�, p = H(u)s� kskkrkr = H(u)y � kykkxkx andU� = H(p)H(u): (4:15)
Then U�s = kskkrkr , U�y = kykkxkx .

By Lemma 4.2, Problem 4.1 can be solved by determiningr;x 2 Rn and� > 0, ~w,~wi > 0 such that rTxkrkkxk = sTykskkyk ; d(� ~w)kskkrkr = kykkxkx (4:16)
or, equivalently, by solving the following:

Problem 4.3 Given a vectorw with positive entries and two vectorss, y, sTy > 0, findr 2 Rn and ~w (i.e. ", � in ~w = "w+ �e) such thatrTd( ~w)rkrkkd( ~w)rk = sTykskkyk =:p�: (4:17)
The vectorsr and ~w obtained in this way,� = kykksk krkkd( ~w)rk , andx = d( ~w)r, 8 > 0,

solve(4.16).

Notice that condition (4.17) can be satisfied only ifp� � mins ~wsmaxs ~ws ;
thus, a choice of~w different from ~w = w (i.e. a pair("; �) different from(1; 0)) will be
necessary to make Problem 4.3 solvable for any0 < � � 1.

If r has only one nonzero entry, then Problem 4.3 has no solution for � < 1. Let us try
to solve Problem 4.3 with a vectorr of typer = ri1ei1 + rinein (4:18)
wherewi1 = minsws,win = maxsws. The reason for this particular choice of the indeces
is linked to the criterion of making (4.17) solvable with~w = w for most values of�, as it
will be clear later. Note that ifn = 2, then (4.18) represents an arbitraryr.

So, we must determineri1 ; rin 2 R and, eventually,("; �) 6= (1; 0) such that~wi1r2i1 + ~winr2inqr2i1 + r2inq ~w2i1r2i1 + ~w2inr2in =p�
or, equivalently,(1� �) ~w2i1r4i1 � 2r2i1r2in  � ~wi1 ~win + � ~w2i1 + ~w2in2 !+ (1� �) ~w2inr4in = 0: (4:170)
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We shall see below how to calculate the scalarsri1 , rin , ", �, by considering separately
the cases� = 1 and0 < � < 1. Onceri1 , rin , ", � have been computed, the vectorsr = ri1ei1 + rinein , ~w = "w+ �e, x = ( ~wi1ri1ei1 + ~winrinein), 8 > 0, and the scalar� = kykksks r2i1 + r2in~w2i1r2i1 + ~w2inr2in ;
solve (4.16). As a consequence, the unitary matrixU = H(u)H(p), p;u defined in
Lemma 4.2, is such thatUd(� ~w)U�s = y, and so the Belle Epoque algorithm modified via
(4.110) works.

Remark 1.By the particular form ofr, the above results hold unchanged if the vectors� ~w and"w + �e, are defined, fors = i1; in, by (� ~w)s = � ~ws, ("w + �e)s = "ws + �,
and , fors 6= i1; in, by (� ~w)s = ~ws, ("w + �e)s = ws. �

Case� = 1.
Equation (4.170) becomesr2i1r2in( ~wi1 � ~win)2 = 0. Then set~ws = ws, s = 1; : : : ; n or("; �) = (1; 0) (we do not need to define~w 6= w, in order to verify (4.170)), and(ri1 ; rin) = � (t; h) 6= (0; 0) ~wi1 = ~win(t; 0) or (0; t); t 6= 0 ~wi1 < ~win :

Case0 < � < 1.

Divide (4.170) by (1� �) ~w2i1r4in and find
r2i1r2in :r2i1r2in = a� = 1(1��) ~w2i1 �� ~wi1 ~win + � � ( ~wi1+ ~win )24 + ( ~wi1� ~win)24 ��r�( ~wi1 � ~win)2 h�( ~wi1+ ~win)24 � ~wi1 ~wini �: (4:19)

Notice that botha+ anda� are positive. If� � 4wi1win(wi1+win)2 (this condition can be better

verified by our particular choice ofi1, in), set ~ws = ws, s = 1; : : : ; n or ("; �) = (1; 0) (we
do not need to define~w 6= w, in order to verify (4.170)). Otherwise, in order to makea�
real, chooseq > 0 such thatqwi1 � 1qwin and� � 4qwi1 1qwin(qwi1 + 1qwin)2 ;
and set~wi1 = qwi1 , ~win = 1qwin ,~ws = ( ws (two)qwi1(win�ws)win�wi1 + 1q win(ws�wi1)win�wi1 (all)

; s 6= i1; in
(see Remark 1) or, equivalently,~w = "w + �e where" = win�q2wi1q(win�wi1) , � = (q2�1)wi1winq(win�wi1) .

Now 4 ~wi1 ~win=(( ~wi1 + ~win)2) � � < 1. Thus (ri1 ; rin) = (�jtjpa+; t) and(ri1 ; rin) = (�jtjpa�; t) are defined inR and solve (4.170) for all t 6= 0.
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TheMoulin Rougealgorithm

Observe that if 4 ~wi1 ~win( ~wi1 + ~win)2 = �; (4:20)
then thea� in (4.19) becomesa+ = a� = ~win= ~wi1 . This leads to conceive a more
compact and simpler algorithm. Give up the criterion of solving (4.17) with ~w = w (i.e.("; �) = (1; 0)) for all values of� (in the algorithm, for all steps) for which is possible.
On the contrary, for each� (in the algorithm, for each step), exploit the parameters", � in~w = "w + �e in order to make the equality (4.20) true.

In detail, letq > 0 be such that 4qwi1 1qwin(qwi1 + 1qwin)2 = �:
By taking into account the conditionqwi1 � 1qwin , we obtainq2 = 2���2p1��� winwi1 , soq is determined: q =s2� � � 2p1� �� rwinwi1 : (4:21)

Now set ~wi1 = qwi1 , ~win = 1qwin , and~ws = ( ws (two)qwi1 (win�ws)win�wi1 + 1q win (ws�wi1 )win�wi1 (all)
; s 6= i1; in;

or, equivalently,~w = "w + �e where" = win�q2wi1q(win�wi1 ) , � = (q2�1)wi1winq(win�wi1) .

Remark 2.After having computedw � wk+1 by (4.8), the introduction of the vector~w = ~wk+1 related tow by the above identities, corresponds to the definition of a matrixA0k+1 = Uk+1d(� ~w)U�k+1 with a condition number greater [smaller] thanwinwi1 , whenever4wi1win(wi1+win)2 > [ < ℄ �. In fact, the condition number ofA0k+1 is�2(A0k+1) = 8<: maxfwin�1 ; ~wingminfwi2 ; ~wi1g (two)~win~wi1 (all)
:�

Then (ri1 ; rin) = (�jtjq ~win~wi1 ; t) satisfy (4.170) for all t 6= 0. Therefore, for such(ri1 ; rin), the quantitiesr = ri1ei1 + rinein ;~w = "w + �e; " = win�q2wi1q(win�wi1 ) ; � = (q2�1)wi1winq(win�wi1) ;� = kykksk 1p ~wi1 ~win = kykksk 1pwi1win ;x = ( ~wi1ri1ei1 + ~winrinein); 8 > 0 (4:22)
solve (4.16). As a consequence, we may state the following theorem which gives explicit
formulas for the vectorsu andp in Lemma 4.2:
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Theorem 4.4 Givens;y 2 Rn , sTy > 0, andw 2 Rn ,wi > 0, let q and�, ", � be defined
as in(4.21)and(4.22), respectively, where

p� = sTykskkyk . Moreover, setu = s� y + �i1ei1 + �inein ;p = 11+2 h1�y � kykp1+�ei1 � tkykp�jtjp1+�ein�+2�s� kskp�p1+� ei1 � tkskjtjp1+�ein�i
where � = ~win~wi1 = winq2wi1 ;�i1 = � 1p1+�(�kskp�� kyk);�in = � tjtjp1+� (ksk � kykp�);1 = (s� y)T s+ �i1si1 + �insin ;2 = �(s� y)Ty � �i1yi1 � �inyin :

Then H(u)H(p)d(�("w + �e))H(p)H(u)s = y: (4:23)
Proof. Use Lemma 4.2 and the equalitieskrk2 = t2(1 + �); kxk2 = 2 ~wi1 ~winkrk2;2p� = sT ykskkyk (1 + �); �2i1 + �2in = ks� yk2:
Observe that in the (two) case the expression�("w + �e) is defined, fors = i1; in, by[�("w + �e)℄s = �("ws + �), and, fors 6= i1; in, by [�("w + �e)℄s = ws. �
Notice that, by Theorem 2.7(iii), the eigenvalues ofA0k+1 in the Moulin Rouge algo-

rithm, case (all), are �( ~wk+1)s = �("(wk+1)s + �)= �("[U�kBk+1Uk℄ss + �)= [U�k (�("Bk+1 + �I))Uk℄ss
i.e. they are the eigenvalues of the matrixLk�"Bk+1+��I = �Lk"Bk+1+�I = �"LkBk+1 + ��I
where � = kykksk 1pwi1win ; " = win � q2wi1q(win � wi1) ; � = (q2 � 1)wi1winq(win � wi1) :
Problem 6: Can Moulin Rouge be generalized tor = Pnk=1 rkek? I.e., is it possible

to introduce a vector~w (satisfying an equality of type (4.20)) for which (4.17) hasa
simple solution vector(r1; : : : ; rn)?

Finally, we resume here below the basic instructions for each step of Belle Epoque and
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Moulin Rouge algorithms:x0 2 Rn ; U0 = n� n unitary matrix,w0 = [1 1 � � � 1℄T ; z0 = w0;U�0d0 = �U�0g0; d0 = U0(U�0d0):F or k = 0; 1; : : : :8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
xk+1 = xk + �kdk; �k 2 AGksk = xk+1 � xk; yk = gk+1 � gk;(4:8);
Calculate�k+1; "k+1; �k+1;uk+1;pk+1 such thatH(uk+1)H(pk+1)d(�k+1("k+1wk+1 + �k+1e))H(pk+1)H(uk+1)sk = yk;zk+1 = �k+1("k+1wk+1 + �k+1e);Uk+1 = H(uk+1)H(pk+1);dk+1 = 8<: Uk(U�kdk+1); (4:241) (I)Uk+1(U�k+1dk+1); (4:242) (II)Uk+1(U�k+1dk+1); (4:243) (III)

where U�kdk+1 = �d(w�1k )U�kgk+1 + sTk gk+1yTk sk d(w�1k )U�kyk+h��1 + (w�1k )T jU�kykj2yTk sk � sTk gk+1yTk sk+ (w�1k )T d(UTk yk)U�kgk+1yTk sk iU�ksk; (4:241)U�k+1dk+1 = �d(wk+1)�1U�k+1gk+1; (4:242)U�k+1dk+1 = �d(zk+1)�1U�k+1gk+1: (4:243)
Remark 3.Following Remark 0, three alternative Belle Epoque (MoulinRouge) algo-

rithms (I)0, (II) 0, (III) 0 can be obtained by replacing in the above scheme, on the righthand
side of (4.8) and of (4.241), the vectorwk with zk. �
5 Appendix

Lemma 5.1 For A = T TT with T = (ti�j)n�1i;j=0, tk 2 C , the inner products in(3.11)can

be computed in at mostO(n log n) a.o. via the formulas~rTT T = rTT T , ~hTT T = hTTT ,rTTT = �DI(T Te0)T + I(Te0 � t0e0)D� Te0 + I(T Te0 � t0e0)DT Te0; (5:1)hTT T = ��1y; y = I(T Te0 � t0e0)T (T Te0 � t0e0) + 2I(T T e0)TTe0+�2I(JTe0)J � JI(JI(e2)Te0)�(Te0 � t0e0); (5:2)
whereD = diag(n � j; j = 0; : : : ; n � 1), I(z) is the upper triangular Toeplitz matrix
defined in(3.12), and � = 2666666664

20 1�1 0 1�1 . .. . . .
. .. . . . 1�1 0 1

3777777775 : (5:3)
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Proof. RewriteT asT = Tl + Tu + t0I whereTu (Tl) is the strictly upper (lower)
triangular part ofT . ThenT TT = T Tu Tu + T Tl Tl +W whereW is a symmetric Toeplitz
matrix whose first column isw = We0 = I(T Te0)TTe0 = I(Te0)TT Te0. Formula (5.1)
follows, by linearity, from the identitiesrW = Dw; rTTu Tu = TuDT Tu e0; rTTl Tl = ~rTlTTl = rTlTTl = T Tl DTle0;
andrTT T = rTTu Tu + rTTl Tl + rW . Regarding formula (5.2) obviously we haveh0;W = w0; h1;W = 2w1; hk;W = hk�2;W + 2wk; 2 � k � n� 1:

Now letRu (Rl) be the lower triangular(2n+1)�n Toeplitz matrix with first column[0 t�1 � � � t�n+1 0 � 2t�n+1 � � � � 2t�1 0℄T ([0 t1 � � � tn�1 0 � 2tn�1 � � � � 2t1 0℄T )
and letqui (qli), i = 0; 1; : : : ; 2n, be the entries of the vectorRuT Tu e0 (RlTle0). Then the
identity[T Tu Tu℄ij = � t�it�j + [T Tu Tu℄i�1;j�1 1 � i; j � n� 10 otherwise
yields the equationsh0;TTu Tu = qu0 = 0; h1;TTu Tu = qu1 = 0;hk;TTu Tu � hk�2;TTu Tu = quk ; 2 � k � 2n� 2;h2n�3;TTu Tu = �qu2n�1; h2n�2;TTu Tu = �qu2n=2 (5:4)
whereh2n�i�2;TTu Tu � ~hi;TTu Tu , 0 � i � 2n� 2. As a consequence, one also obtainsh0;TTl Tl = �ql2n=2; h1;TTl Tl = �ql2n�1; hk;TTl Tl = hk�2;TTl Tl � ql2n�k; 2 � k � n� 1:

Finally, by linearity,h0;TT T = y0=2; h1;TT T = y1; hk;TTT = hk�2;TTT + yk; 2 � k � n� 1
whereyk = quk � ql2n�k + 2wk, 0 � k � n� 1, i.e. the desired formula (5.2) holds.�

Notice that Lemma 5.1 essentially reports in a compact form some Lemmas of Potts-
Steidl [41]. However, the formula (5.1) forrTT T is simpler than the analogs in [41] as it
is obtained by a different splitting of the Toeplitz matrixT . Moreover theboundaryvalue
difference equations (5.4) are not pointed out in [41].
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