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Abstract. A class ξ of algebras of symmetric n × n matrices, related to Toeplitz-plus-Hankel
structures and including the well-known algebra H diagonalized by the Hartley transform, is investi-
gated. The algebras of ξ are then exploited in a general displacement decomposition of an arbitrary
n× n matrix A. Any algebra of ξ is a 1-space, i.e., it is spanned by n matrices having as first rows
the vectors of the canonical basis. The notion of 1-space (which generalizes the previous notions
of L1 space [Bevilacqua and Zellini, Linear and Multilinear Algebra, 25 (1989), pp. 1–25] and Hes-
senberg algebra [Di Fiore and Zellini, Linear Algebra Appl., 229 (1995), pp. 49–99]) finally leads to
the identification in ξ of three new (non-Hessenberg) matrix algebras close to H, which are shown
to be associated with fast Hartley-type transforms. These algebras are also involved in new efficient
centrosymmetric Toeplitz-plus-Hankel inversion formulas.
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1. Introduction. It is well known that the inverse of any nonsingular Toeplitz
matrix T = (ti−j)ni,j=1 can be represented using lower and upper triangular Toeplitz

matrices Lm, Um via the Gohberg–Semencul formula T−1 = L1U1 + L2U2 [23].
Kailath, Kung, and Morf [28] extended this result by showing that any n× n matrix
A can be decomposed as

A =

α∑
m=1

LmUm(1.1)

with α equal to the displacement rank of A, i.e., α = rank(A − ZAZT ), where Z =
(δi, j+1)ni, j=1. On the basis of the ideas introduced in [28], different fast algorithms
for the inversion or the factorization of structured matrices such as Toeplitz-like [27,
31, 33], Cauchy-like [19, 24], and polynomial Vandermonde-like matrices [29, 30] have
been developed (see also [7, 25, 31]).

Besides the triangular Toeplitz used in [23, 28], other algebras have been exploited
in displacement formulas of type (1.1), for example, ε-circulant [1, 18, 20], τ algebra
[6, 16, 32], and algebras of dimension greater than n [8, 9]. In [16], most of these al-
gebras appear as special instances of Hessenberg algebras, which allows one to regain
the known displacement formulas in a more general context and to obtain new de-
compositions of high efficiency (especially if A is the inverse of a Toeplitz-plus-Hankel
matrix) [16, 10, 17].

If A is a Toeplitz-like matrix, that is, A has a small displacement rank α, then the
known displacement formulas let one compute the matrix-vector product Af , f ∈ Cn,
by means of a small number of fast discrete transforms (assuming preprocessing on
A). These transforms are discrete Fourier transforms (DFT) in cases of formulas
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involving triangular Toeplitz or ε-circulant matrices [1, 9, 17, 21, 22] and are sine or
cosine transforms in cases of formulas involving τ or τε,ϕ matrices [6, 10, 16, 17, 32],
and therefore they are all associated with Hessenberg algebras [16].

In this paper we further extend the results of [6, 9, 10, 16, 17, 18, 20, 21, 22, 28, 32]
in the sense that we introduce a new class of matrix algebras L, including Hessenberg
and other algebras of matrices diagonalized by means of Hartley [11, 12] or Hartley-
type transforms, which have not been yet considered in displacement literature. This
extension requires the study of matrix algebras containing the matrix T β,βε,ϕ displayed
at the beginning of section 2. Notice that the algebraH of the matrices diagonalized by
the Hartley transform (see [5]) contains the matrix T 1,1

0,0 . The appropriate mechanism

for capturing algebras L such that L ⊃ T β,βε,ϕ , which are generally not Hessenberg,
is the notion of 1-space (which is an extension of the notions of L1 space [4] and
Hessenberg algebra [16]).

A 1-space is a space of n × n matrices A spanned by n matrices Jk having as
first rows the vectors of the canonical basis of Cn. If [z1z2 · · · zn] is the first row of
A, then each aij is a linear combination in C of z1, z2, . . . , zn. Any space of matrices
simultaneously diagonalized by a nonsingular matrixM whose first row has all nonzero
entries can be easily checked to be a 1-space. This is the main reason why the
introduction of 1-spaces allows one to extend the range of algebras which could be
used, in principle, in (possibly) efficient displacement formulas. In particular, the
algebra H diagonalized by the Hartley transform [5] is a 1-space even though it is not
a Hessenberg algebra.

The results of this paper are now described in detail.
In section 2 we state some properties of commutative 1-spaces used throughout the

paper. Then we define a class of symmetric 1-spaces ξ(ϕ, β,p), ϕ, β ∈ C, p ∈ Cn−1 in
terms of matrices of different dimensions from the algebra τ (τ is the algebra generated
by T 0,0

0,0 ). The main result of section 2 is Theorem 2.5, where the symmetric 1-algebras

(closed 1-spaces), including the matrix T β,βε,ϕ , are shown to be the spaces ξ(ϕ, β,p) with
p running among the solutions of a linear system with coefficients depending upon ϕ,
β, and ε.

In section 3 a general displacement formula for a matrix A in terms of 2α matrices

from two arbitrary symmetric 1-algebras L ⊃ T β,βε,ϕ and L′ ⊃ T β′,β′ε′,ϕ′ is obtained under

the assumption that the rank of AT β,βε,ϕ −T β,βε,ϕ A is α (see Theorem 3.2). This formula
extends some formulas of [10] to the case of non-Hessenberg algebras.

In sections 4 and 5 the results of Theorems 2.5 and 3.2 are investigated and spe-
cialized. In particular it is shown that the Hartley algebra H introduced in [5] is an
element of the class of 1-algebras ξ characterized in Theorem 2.5 and that there are
at least three other algebras of ξ, called η, µ, and K, which are associated with fast
Hartley-type discrete transforms (see Theorem 5.2 and the following remark). More-
over, new decompositions of the inverse of an arbitrary centrosymmetric Toeplitz-
plus-Hankel matrix T +H = (ti−j + hi+j − 2)ni, j = 1 in terms of matrices from H, K,
η, and µ are obtained. In particular it is shown that there exist a,b ∈ Cn such that

(T +H)−1 = [µ(a) + I]η(b)− µ(b)[η(a)− I].(1.2)

(Here L(z) denotes the matrix of L whose first row is zT .) Under the assumption
that the vectors a and b are known, formula (1.2) lets one calculate the matrix-vector
product (T +H)−1f , f ∈ Cn, by means of 10 fast discrete transforms reducible to 8 in
case H = 0, [T−1]11 6= 0, matching both best limits known so far [1, 10, 16]. In any
case, the number of transforms reduces to 6 (as in [1, 10, 16, 21, 22]) if the transforms



648 CARMINE DI FIORE

of vectors not depending upon f are included in the preprocessing stage, where a and
b are computed.

2. A class of algebras of symmetric matrices. The main result of this
section (Theorem 2.5) is a characterization of all spaces L of n×n matrices containing
the matrix

T β,βε,ϕ =



ε 1 0 · · 0 β

1 0 1 . 0

0 1 . . . ·
. . . . . . ·
. . . . 1 0

0 . 1 0 1

β 0 · · 0 1 ϕ


, ε, ϕ, β ∈ C(2.1)

and satisfying the following three properties: A = AT , ∀A ∈ L; AB ∈ L, ∀A, B ∈ L;
L is a 1-space (see Definition 2.1). Notice that the properties of symmetry and closure
imply the commutativity of L. Moreover, requiring L to be a 1-space essentially means
that any matrix of L is determined once its first row is given.

The interest of matrix algebras including T β,βε,ϕ and of possible displacement de-
compositions involving them (see sections 3 and 4) is in the fact that for a Toeplitz-
plus-Hankel matrix T + H, [T + H]ij = ti−j + hi+j−2, i, j = 1, . . . , n, the rank
of (T + H)T β,βε,ϕ − T β,βε,ϕ (T + H) is 4 for all values of ε, ϕ, β (see [26] for the case
ε = ϕ = β = 0). In section 5, this fact finally leads to efficient inversion formulas
for T +H involving Hartley-type matrix algebras. The appropriate mechanism with
which to capture algebras including T β,βε,ϕ is the notion of 1-space introduced below.

Let Mn(C) be the space of n×n matrices with entries in the complex field C and
let ek, k = 1, . . . , n, be the vectors of Cn ek = [0 · · 0 1

k
0 · · 0]T .

Definition 2.1. A subset L of Mn(C) is a 1-space if there exist n n×n matrices
Jk ∈ L, k = 1, . . . , n, such that L = {∑n

k=1 akJk : ak ∈ C} and

eT1 Jk = eTk , k = 1, . . . , n.

Closed (under matrix multiplication) 1-spaces are also called 1-algebras.
Many significant classes of spaces of matrices have 1-space structure. Some ex-

amples are the group (or, more generally, hypergroup) matrix algebras [18, 3] and the
intersection algebras of the association schemes [2, pp. 52–57]; a simple example is
the space of all symmetric Toeplitz matrices (which is not a matrix algebra).

Moreover, every space HX = {∑n
k=1 akX

k−1 : ak ∈ C}, where X is an n × n
lower Hessenberg matrix, is a 1-space if the entries [X]i, i+1 are all nonzero. In this
case we also have that HX = {A ∈Mn(C) : AX = XA} because X is nonderogatory.
In [16] HX is called Hessenberg algebra (HA) and, for z = [z1 · · · zn]T ∈ Cn, HX(z)
denotes the matrix of HX whose first row is zT . For our purposes it is useful to recall
the HAs corresponding to the choices X = Tε,ϕ and X = Pβ , where

Tε,ϕ =


ε 1 0 · · · 0
1 0 1 . .
0 1 . . . ·. . . . . .
. . . . 1 0

. 1 0 1
0 · · · 0 1 ϕ

 and Pβ =


0 1 0 · · · 0· 0 1 . .· . . .
. ·. . .
· . 1 0
0 0 1
β 0 · · · · 0

 .(2.2)
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These HAs are denoted, respectively, by τε,ϕ and Cβ in conformity with [10, 16, 17,
20]. In fact the (non-Hessenberg) algebras containing T β,βε,ϕ studied in Theorem 2.5
and in section 4 are defined in terms of matrices from τε,ϕ and Cβ . Notice that the
matrices of τε,ϕ and of Cβ are, respectively, symmetric and persymmetric, in particular
Cβ(z) =

∑n
i=1 ziP

i−1
β . Cβ is the space of β-circulant matrices, and C = C1 is the

well-known space of circulant matrices [14].
Finally, observe that any space L defined as the set of all matrices diagonalized

by a nonsingular matrix M is a 1-space if [M ]1,i 6= 0 ∀i, because, in this case, L =
{Md(MT z)d(MTe1)−1M−1 : z ∈ Cn}, where for z ∈ Cn d(z) = diag(zi, i = 1, . . . , n).
As a consequence, the algebra H diagonalized by the Hartley transform (see [5]) is
a 1-space even though it is not an HA. Recall that matrices from H are symmetric
and that H contains the matrix T 1,1

0,0 . Thus H is an example of a symmetric 1-algebra

including T β,βε,ϕ for β 6= 0.
Following the notation used for HAs, if L is a 1-space and z ∈ Cn, L(z) denotes

the matrix of L whose first row is zT , i.e., L(z) =
∑n
i=1 ziJi, where Ji are the matrices

in Definition 2.1. Notice that A ∈ L iff A = L(ATe1).
Proposition 2.2. Let L be a commutative 1-space. Then
(i) L is closed under matrix multiplication and I ∈ L;

(ii) xTL(y) = yTL(x) ∀x,y ∈ Cn;
(iii) L(L(x)Ty) = L(y)L(x) ∀x,y ∈ Cn.
Proof. As JkJs = JsJk ∀s, k, we have that eTk Js = eTs Jk ∀s, k. Consequently,

J1 ≡ L(e1) is the identity matrix I. Moreover, for all i, j, eTi (
∑n
r=1[Js]krJr)ej =∑n

r=1[Js]kr[Jr]ij =
∑n
r=1[Js]kr[Ji]rj = [JsJi]kj = [JiJs]kj = [JkJs]ij and thus

JkJs =

n∑
r=1

[Js]krJr ∀ s, k,

that is, assertion (i) holds. For (iii) observe that, by (i), both L(y)L(x) and L(L(x)Ty)
are in L and have yTL(x) as first row. Finally, for (ii) use (iii) and the commutativity
of L.

Proposition 2.2 and the following notation are used throughout the paper. The
symbol Iij , 1 ≤ i, j ≤ n, denotes the (|j − i| + 1) × n (0, 1) matrix, which maps a

vector z = [z1 · · · zn]T ∈ Cn into the vector Iijz = [zi · · · zj ]T ∈ C|j−i|+1. Thus I = I1
n

and J = In1 are, respectively, the n × n identity and the reversion matrix. I and J
also denote, respectively, identity and reversion matrices of dimensions different from
n. Also, set ek = I1

n−1ek, k = 1, . . . , n− 1, and ẑ = [zk · · · z1]T = Jz if z ∈ Ck.
Now we state Theorem 2.5, where the symmetric closed 1-spaces containing T β,βε,ϕ

are shown to be the spaces ξ(ϕ, β,p) in Definition 2.4 obtained by choosing as p the
solutions of (2.6). As a consequence (see section 4) for given ε, ϕ, β, there are as many
symmetric 1-algebras including T β,βε,ϕ as the solutions of equation (2.6), i.e., none, an
infinite number, or only one, depending upon the values of ε, ϕ, β. A preliminary
Lemma 2.3 follows.

Lemma 2.3. (i) Let A be an n×n matrix and xm and ym, m = 1, . . . , α, vectors
of Cn such that ATε,0 − Tε,0A =

∑α
m=1 xmyTm. Then

A =

α∑
m=1

 0 · · · · · 0··· τ(I2
nxm)

0

Ωε(ym) + Ωε(A
Te1),(2.3)

where τ = τ0,0 and Ωε = τε,0.
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(ii) In particular, for z ∈ Cn,

Ωε(z) = τ(z)− ε

 0 · · · · 0··· τ(I2
nz)

0

 .(2.4)

Proof. For (i) see [16]. (ii) follows from the identities

τ(z)Tε,0 − Tε,0τ(z) = τ(z)T0,0 − T0,0τ(z) + ε[τ(z)e1e
T
1 − e1e

T
1 τ(z)] = ε(zeT1 − e1z

T )

and from assertion (i) for A = τ(z).
Definition 2.4. For ϕ, β ∈ C, p ∈ Cn−1, define the space of n× n matrices

ξ ≡ ξ(ϕ, β,p)

=

τ(z)−

 0 · · · · 0

: τ(I2
n−1z) :

0 · · · · 0

 (ϕI + βJ) +

 0 · · · · · · 0
:
JΩϕ(In2 z)Ωϕ(p)J

0

 : z ∈ Cn


(2.5)

and denote by ξ(z) the matrix of ξ whose first row is zT .
Theorem 2.5. If L is a symmetric closed 1-space containing the matrix T β,βε,ϕ for

some ε, ϕ, β ∈ C, then L = ξ(ϕ, β,p) with p such that

Ωϕ(βe1 + en−1)p = (ϕ− ε)e1.(2.6)

Conversely, every space of matrices ξ(ϕ, β,p) with p solving (2.6) for some ε ∈ C is
a symmetric closed 1-space containing the matrix T β,βε,ϕ ; moreover, ξ(ϕ, β,p) = {A ∈
Mn(C) : AT β,βε,ϕ = T β,βε,ϕ A and Aξ(en) = ξ(en)A}.

Proof. Let L be a symmetric closed 1-space containing the matrix T β,βε,ϕ and let A

be an arbitrary element of L. Notice that AT β,βε,ϕ = T β,βε,ϕ A and therefore I2
nAe1(e1 +

βen−1)T +BT
()
0,ϕ = (e1 +βen−1)(I2

nAe1)T +T
()
0,ϕB, where B and T

()
0,ϕ are the (n−1)×

(n− 1) lower-right submatrices of A and T β,βε,ϕ , respectively. Right- and left-multiply
this equality by the matrix J to obtain

JBJT
()
ϕ,0 − T ()

ϕ,0JBJ = (βe1 + en−1)(In2 Ae1)T − (In2 Ae1)(βe1 + en−1)T(2.7)

(T
()
ϕ,0 = JT

()
0,ϕJ). The identity (2.7) and Lemma 2.3(i) (with n replaced by n − 1)

yield

JBJ =

 0 · · 0
:

J0

Ωϕ(In2 Ae1)−
 0 · · · · 0

:
τ(In−1

2 Ae1)
0

 Ωϕ(βe1+en−1)+Ωϕ(In2 Aen).

Therefore,

B=

 0
J :

0 · · · 0

JΩϕ(In2 Ae1)J−
 τ(In−1

2 Ae1) 0
:

0 · · · · 0

JΩϕ(βe1+en−1)J+JΩϕ(In2 Aen)J
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and, by the equality (2.4),

B =

 0
J :

0 · · · 0

 τ(In2 Ae1)−
(
τ(In−1

2 Ae1) 0
:

0 · · · · 0

)
J

− β
 τ(In−1

2 Ae1) 0
:

0 · · · · 0

+ JΩϕ(In2 Aen)J.(2.8)

As a consequence of (2.8) we have 0 (I2
nAe1)T

:
B

0

 = J

 0 · · · 0
:
τ(In2 Ae1)

0

− β
 0 · · · · 0

: τ(In−1
2 Ae1) :

0 · · · · 0



−
 0 · · · · 0

: τ(In−1
2 Ae1) :

0 · · · · 0

 0 · · · 0
:
J

0



+

 0 · · · · · 0
:
JΩϕ(In2 Aen) J

0

 .(2.9)

As A = L(Ae1), by Proposition 2.2(ii), Aen = L(en)Ae1, i.e., Aen = (J+(
0 · · 0
:
Q0

))Ae1,

for a certain (n − 1) × (n − 1) matrix Q not depending upon A. Thus In2 Aen =
I1
n−1Ae1 + JQJIn2 Ae1 and (2.9) becomes 0 (I2

nAe1)T

:
B

0

 = J

 0 · · · 0
:
τ(In2 Ae1)

0

−( 0 · · · · 0
: τ(In−1

2 Ae1) :
0 · · · · 0

) 0 · · · 0
:
J

0



+

 0 · · · 0
:
τ(I1

n−1Ae1)
0



−
 0 · · · · 0

: τ(I2
n−1Ae1) :

0 · · · · 0

 (ϕI + βJ) +

 0 · · · · · · 0
:
JΩϕ(JQJIn2 Ae1)J

0

 .

(2.10)

Notice that the sum of the first three matrices on the right-hand side of (2.10) plus
Ae1e

T
1 is the matrix τ(Ae1). In fact the identity τ(Ae1)T0,0 = T0,0τ(Ae1) implies that

(2.7) holds for ϕ = β = 0 and for B (T
()
0,0) the (n− 1)× (n− 1) lower-right submatrix

of τ(Ae1) (T0,0); the thesis follows from (2.10), which then holds for ϕ = β = 0 and
Q = 0. Thus we have an explicit expression of A ∈ L:

A = τ(Ae1)−
 0 · · · · 0

: τ(I2
n−1Ae1) :

0 · · · · 0

 (ϕI + βJ) +

 0 · · · · · · 0
:
JΩϕ(JQJIn2 Ae1) J

0

 .

By exploiting it for A = L(en) = J + (
0 · · 0
:
Q0

), we realize that JQJ = Ωϕ(JQJe1)

or, equivalently, that JQJ = Ωϕ(p) for some p ∈ Cn−1 not depending upon A.
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Therefore, by Proposition 2.2(iii), the generic matrix A of a symmetric closed 1-space
containing T β,βε,ϕ has the expression

A = τ(Ae1)−
 0 · · · · 0

: τ(I2
n−1Ae1) :

0 · · · · 0

 (ϕI + βJ) +

 0 · · · · · · · 0
:
JΩϕ(In2 Ae1)Ωϕ(p) J

0


(2.11)

for some p ∈ Cn−1. In particular, (2.11) must be verified for A = T β,βε,ϕ and thus p
must verify (2.6).

Now let us prove the second part of Theorem 2.5. Consider the space ξ =
ξ(ϕ, β,p) in Definition 2.4 and assume that p solves equation Ωϕ(βe1 + en−1)p =
(ϕ− ε)e1 for some ε ∈ C. The matrix T β,βε,ϕ is an element of ξ; in fact, by Proposition

2.2(iii), ξ(εe1 +e2 +βen) = T β,βε,ϕ . Obviously, ξ is a symmetric 1-space. Thus we have
to prove only that ξ is equal to the space A defined as

A =
{
A ∈Mn(C) : AT β,βε,ϕ = T β,βε,ϕ A and Aξ(en) = ξ(en)A

}
(2.12)

since the closure of ξ follows from the closure of A. Observe that A is a linear space
whose dimension is not greater than n. In fact, let Ai, i = 1, . . . , k, be k linearly
independent matrices of A. If k > n, then there exist k elements of C, zi, i = 1, . . . , k,
not all null and such that

∑k
i=1 zie

T
1 Ai = 0T . The matrix

∑k
i=1 ziAi is an element

of A and eT1 (
∑k
i=1 ziAi) = 0T . However, if a matrix A ∈ A, then it satisfies the

identities

eT1 AT
β,β
ε,ϕ = εeT1 A+ eT2 A+ βeTnA, eT1 Aξ(en) = eTnA,

(2.13)

eTi AT
β,β
ε,ϕ = eTi−1A+ eTi+1A, i = 2, . . . , n− 1.

If, moreover, eT1 A = 0T from (2.13), it follows that A = 0. Thus the matrix
∑k
i=1 ziAi

above must be null and the Ai’s are linearly dependent, that is, a contradiction. Now
we show that ξ ⊂ A. As a consequence of this fact and of the inequalities dim ξ = n
and dim A ≤ n, we have that ξ = A.

For z ∈ Cn, set

M(z) = τ(z)−
 0 · · · 0

: τ(I2
n−1z) :

0 · · · 0

 (ϕI + βJ), N(z) =

 0 · · · · · · 0
:
JΩϕ(In2 z)Ωϕ(p) J

0


and notice that ξ(z) = M(z) +N(z). By exploiting the equality T β,βε,ϕ = T β,βϕ,ϕ + (ε−
ϕ)e1e

T
1 , as well as the fact that the first row and the first column of N(z) are null,

and the equality M(z)T β,βϕ,ϕ = T β,βϕ,ϕM(z) (the proof of this identity is obvious and
mechanical and thus is omitted), we have

ξ(z)T β,βε,ϕ − T β,βε,ϕ ξ(z) = (ε− ϕ)(zeT1 − e1z
T ) +N(z)T β,βϕ,ϕ − T β,βϕ,ϕN(z).

As

N(z)T β,βϕ,ϕ−T β,βϕ,ϕN(z) =

(
0 −pTΩϕ(βe1 + en−1)Ωϕ(In2 z)J

JΩϕ(In2 z)Ωϕ(βe1 + en−1)p O

)
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the assumption Ωϕ(βe1 + en−1)p = (ϕ− ε)e1 yields

N(z)T β,βϕ,ϕ − T β,βϕ,ϕN(z) = (ϕ− ε)(zeT1 − e1z
T ),

and therefore ξ(z)T β,βε,ϕ = T β,βε,ϕ ξ(z) ∀z ∈ Cn.

Now set Q = ξ(z)ξ(en)−ξ(en)ξ(z). Notice that eT1 Q = zTN(en)−eTnN(z) = 0T .
Therefore, as QT = −Q, the first row and the first column of Q are null. Moreover,
QT β,βε,ϕ = T β,βε,ϕ Q, which implies

Q =

 0 · · · 0
:
τ0,ϕ(x)

0


for some x ∈ Cn−1. Thus Q is simultaneously symmetric and skewsymmetric; there-
fore, Q = ξ(z)ξ(en)− ξ(en)ξ(z) = 0 ∀z ∈ Cn.

3. 1-algebras and displacement formulas. The algebras characterized in
Theorem 2.5 are now involved in a general decomposition formula (see Theorem 3.2
below) which leads, in the next section, to new significant displacement decomposi-
tions corresponding to special choices of these matrix algebras. A preliminary Lemma
3.1 generalizing related results on HAs [16, 10, 17] follows below. The role of this
lemma in the proof of Theorem 3.2 is analogous to the role of orthogonality relations
in the proof of displacement decompositions involving group matrices [18]. In Lemma
3.1 and Theorem 3.2 A denotes an arbitrary n× n matrix.

Lemma 3.1. Let L be a commutative 1-space and let X ∈ L. If xm, ym ∈ Cn,
m = 1, . . . , α, are such that AX−XA =

∑α
m=1 xmyTm, then

∑α
m=1 xTmL(ym)T = 0T .

Proof. By Proposition 2.2(ii), for r = 1, . . . , n,

α∑
m=1

xTmL(ym)Ter =
α∑

m=1

xTmJ
T
r ym =

α∑
m=1

n∑
i,j=1

[xm]i[ym]j [J
T
r ]i

=
n∑

i,j=1

[AX −XA]ij [Jr]ji =
n∑
i=1

[(AX −XA)Jr]ii =
n∑
i=1

[(AJr)X −X(AJr)]ii = 0.

Theorem 3.2. Let L and L′ be two symmetric closed 1-spaces containing the

matrices T β,βε,ϕ and T β
′,β′

ε′,ϕ′ , respectively. If AT β,βε,ϕ − T β,βε,ϕ A =
∑α
m=1 xmyTm, then

(ε− ε′)A+ (β − β′)(AL(en) + L′(en)A) + (ϕ− ϕ′)L′(en)AL(en)

=
α∑

m=1

L′(xm)L(ym) + L′((ε− ε′)e1 + (β − β′)en)L(ATe1)(3.1)

+ L′((β − β′)e1 + (ϕ− ϕ′)en)L(ATen).

Proof. Let X be a symmetric n × n matrix such that if AX = XA and eT1 A =
eTnA = 0T , then A = 0. Set [X]1n = [X]n1 = β, [X]11 = ε, and [X]nn = ϕ and let
X ′ be the n× n matrix defined by X = X ′ + (ε− ε′)e1e

T
1 + (β − β′)(e1e

T
n + eneT1 ) +

(ϕ−ϕ′)eneTn . The assertion of Theorem 3.2 is now shown for X and X ′ instead of for

T β,βε,ϕ and T β
′,β′

ε′,ϕ′ , respectively. The thesis will follow because T β,βε,ϕ and T β
′,β′

ε′,ϕ′ satisfy
the hypotheses on X and X ′. (The simple proof of this fact is left to the reader.)

Let M and N be the matrices on the left-hand side and on the right-hand side
in equality (3.1), respectively. We shall prove that if AX −XA =

∑α
m=1 xmyTm, then
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(M −N)X = X(M −N) and eT1 (M −N) = eTn (M −N) = 0T , and therefore, by the
hypothesis on X, M = N .

The equality eT1 M = eT1 N is easily verifiable by exploiting Lemma 3.1. The
equalities (M −N)X = X(M −N) and eTnM = eTnN are equivalent to the equalities

[(β − β′)e1 + (ϕ− ϕ′)en]

{
α∑

m=1

xTmL′(en)L(ym)

}
= [(β − β′)e1 + (ϕ− ϕ′)en]{(ε− ε′)[eTnA− eT1 AL(en)]

+ eTnL′(en)[(β − β′)(A− L(ATe1)) + (ϕ− ϕ′)(AL(en)− L(ATen))]}
and

α∑
m=1

xTmL′(en)L(ym) = (ε− ε′)[eTnA− eT1 AL(en)]

+ eTnL′(en)[(β − β′)(A− L(ATe1)) + (ϕ− ϕ′)(AL(en)− L(ATen))],(3.2)

respectively. The proof of the second equivalence is simple. Let us prove the first one.

NX−XN =
α∑

m=1

[L′(xm)X−XL′(xm)]L(ym) + (β − β′)[L′(en)X−XL′(en)]L(ATe1)

+ (ϕ− ϕ′)[L′(en)X −XL′(en)]L(ATen).

For the sake of simplicity, set Q = L′(en)X −XL′(en) and then exploit the equality
X = X ′ + (ε− ε′)e1e

T
1 + (β − β′)(e1e

T
n + eneT1 ) + (ϕ− ϕ′)eneTn to obtain

NX −XN =

α∑
m=1

{(ε− ε′)(xmeT1 − e1x
T
m) + (β − β′)

× [xmeTn + L′(en)xmeT1 − e1x
T
mL′(en)− enxTm]

+ (ϕ− ϕ′)[L′(en)xmeTn − enxTmL′(en)]}L(ym)

+ (β − β′)QL(ATe1) + (ϕ− ϕ′)QL(ATen)

=
α∑

m=1

{(ε− ε′)[xmyTm − e1x
T
mL(ym)]

+ (β − β′)[xmyTmL(en) + L′(en)xmyTm

− e1x
T
mL′(en)L(ym)− enxTmL(ym)]

+ (ϕ− ϕ′)[L′(en)xmyTmL(en)− enxTmL′(en)L(ym)]}
+ (β − β′)QL(ATe1) + (ϕ− ϕ′)QL(ATen).

By exploiting the assumption AX − XA =
∑α
m=1 xmyTm and Lemma 3.1, the last

expression becomes

(ε− ε′)(AX −XA) + (β − β′)

×
[

(AX −XA)L(en) + L′(en)(AX −XA)− e1

α∑
m=1

xTmL′(en)L(ym)

]
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+ (ϕ− ϕ′)
[
L′(en)(AX −XA)L(en)− en

α∑
m=1

xTmL′(en)L(ym)

]

+ (β − β′)QL(ATe1) + (ϕ− ϕ′)QL(ATen)

= (ε− ε′)(AX −XA) + (β − β′)

×
[
AL(en)X−XAL(en) + L′(en)AX−XL′(en)A−QA− e1

α∑
m=1

xTmL′(en)L(ym)

]

+ (ϕ− ϕ′)
[
L′(en)AL(en)X −XL′(en)AL(en)−QAL(en)

− en

α∑
m=1

xTmL′(en)L(ym)

]
+ (β − β′)QL(ATe1) + (ϕ− ϕ′)QL(ATen)

= MX −XM + (β − β′)Q[L(ATe1)−A] + (ϕ− ϕ′)Q[L(ATen)−AL(en)]

− [(β − β′)e1 + (ϕ− ϕ′)en]
α∑

m=1

xTmL′(en)L(ym).

By replacing xm with en in the expression of L′(xm)X − XL′(xm) obtained above,
we have Q = (ε − ε′)(eneT1 − e1e

T
n ) + (β − β′)[L′(en)eneT1 − e1e

T
nL′(en)] + (ϕ −

ϕ′)[L′(en)eneTn − eneTnL′(en)]. Thus

NX−XN = MX−XM + (β − β′){[(β − β′)e1 + (ϕ− ϕ′)en]eTnL′(en)[A− L(ATe1)]

+ [(ε− ε′)e1 − (ϕ− ϕ′)L′(en)en][eTnA− eT1 AL(en)]}
+ (ϕ− ϕ′){[(β − β′)e1 + (ϕ− ϕ′)en]eTnL′(en)[AL(en)− L(ATen)]

+ [(ε− ε′)en + (β − β′)L′(en)en][eTnA− eT1 AL(en)]}

− [(β − β′)e1 + (ϕ− ϕ′)en]
α∑

m=1

xTmL′(en)L(ym)

= MX −XM + [(β − β′)e1 + (ϕ− ϕ′)en]{(ε− ε′)[eTnA− eT1 AL(en)]

+ eTnL′(en)[(β − β′)(A− L(ATe1)) + (ϕ− ϕ′)(AL(en)− L(ATen))]}

− [(β − β′)e1 + (ϕ− ϕ′)en]

{
α∑

m=1

xTmL′(en)L(ym)

}

and the first equivalence is proved. Now we have to prove (3.2) and the proof of
Theorem 3.2 will be complete, because then the equality preceding (3.2)—identical
to (3.2), but a factor—is satisfied. For s = 1, . . . , n

α∑
m=1

xTmL′(en)L(ym)es =
α∑

m=1

xTmL′(en)L(es)ym =
α∑

m=1

n∑
i, j=1

[xm]i[ym]j [L′(en)L(es)]ij

=
n∑

i, j=1

[AX −XA]ij [L(es)L′(en)]ji =
n∑
i=1

[AL(es)XL′(en)−XAL(es)L′(en)]ii
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=
n∑
i=1

[−AL(es)(L′(en)X −XL′(en))]ii

=
n∑
i=1

[−AL(es){(ε− ε′)(eneT1 − e1e
T
n ) + (β − β′)[L′(en)eneT1 − e1e

T
nL′(en)]

+ (ϕ− ϕ′)[L′(en)eneTn − eneTnL′(en)]}]ii

= −(ε− ε′)
n∑
i=1

eT1 [AL(en)ese
T
1 −Aese

T
n ]ei − (β − β′)

n∑
i=1

eTi [AL(es)L′(en)eneT1

− Aese
T
nL′(en)]ei − (ϕ− ϕ′)

n∑
i=1

eTi [AL(es)L′(en)eneTn −AL(en)ese
T
nL′(en)]ei

= (ε− ε′)[eTnAes − eT1 AL(en)es] + (β − β′)[eTnL′(en)Aes − eTnL′(en)L(es)A
Te1]

+ (ϕ− ϕ′)[eTnL′(en)AL(en)es − eTnL′(en)L(es)A
Ten],

that is, (3.2) holds.
Remark. It is clear that Theorem 3.2 holds unchanged if T β,βε,ϕ = Tε,ϕ + β(e1e

T
n +

eneT1 ) is replaced by M = Y + β(e1e
T
n + eneT1 ), where Y is a generic symmetric

tridiagonal matrix having at least n−2 nonzero entries [Y ]i, i+1, and T β
′,β′

ε′,ϕ′ is replaced

by M ′ = Y ′ + β′(e1e
T
n + eneT1 ), where Y ′ = Y + (ε′ − ε)e1e

T
1 + (ϕ′ − ϕ)eneTn (set

[Y ]11 = ε, [Y ]nn = ϕ). (In fact M and M ′ satisfy the assumptions on X and X ′ at
the beginning of the proof.) This result includes Theorems 3.2 (i = 1, i = n) and 3.4
of [10].

For β = β′ = 0 the result stated in Theorem 3.2 leads to displacement decom-
positions exploiting symmetric HAs that include, as special instances, some of the
most significant formulas stated in [10] (see Corollaries 4.1 and 4.2 in [10]). In the
next section it is shown that formula (3.1) also leads to significant decompositions
exploiting 1-spaces which are not HAs. More specifically, in these last decompositions
some Hartley-type matrix algebras will be involved.

4. The algebras η, µ,H,K. Theorem 3.2 can be exploited in order to obtain—
as special cases of formula (3.1)—effective displacement decompositions of a generic
matrix A. To this end we need to know if, and under what assumptions, there exist
symmetric 1-algebras containing matrices of the form T β,βε,ϕ . Theorem 2.5 relates the
existence of such spaces ξ(ϕ, β,p) to the existence of vectors p solving the linear
system

Iβϕp = (ϕ− ε)e1,(4.1)

where Iβϕ is the (n− 1)× (n− 1) matrix

Iβϕ = Ωϕ(βe1 + en−1) =


β · · · · · ·

β

+


1

1 −ϕ·· ···1
1 −ϕ

 .(4.2)

Equation (4.1) may have no solution, infinite solutions, or only one solution; these
three cases and the corresponding 1-spaces ξ(ϕ, β,p) are studied in Proposition 4.2.
For the sake of simplicity, for U , V n× n matrices, set CV (U) = UV − V U .
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Lemma 4.1. Iβϕ is nonsingular iff ∃ z ∈ Cn−1 and δ ∈ C, δ 6= 0, such that
zT Iβϕ = δeT1 . In this case I−1

β,ϕ = δ−1Ωϕ(z).
Proof. The assertion holds for any matrix A of a commutative 1-space L; in fact,

if zTA = δeT1 , then eTi L(z)A = zTL(ei)A = zTAL(ei) = δeTi , i = 1, . . . , n− 1, that is,
δ−1L(z)A = I.

Proposition 4.2. We have the following three cases.
(i) Iβϕ singular and ε 6= ϕ: There is no symmetric 1-algebra containing T β,βε,ϕ .

(ii) Iβϕ singular and ε = ϕ: There are infinite symmetric 1-algebras containing
T β,βϕ,ϕ and therefore T β,βϕ,ϕ is derogatory. More specifically, these spaces are
the ξ(ϕ, β,p) (in (2.5)) where p is such that Iβϕp = 0, and they can be
represented as

ξ(ϕ, β,p) =
{
A ∈Mn(C) : CA

(
T β,βϕ,ϕ

)
= CA(ξ(en)) = 0

}
.(4.3)

Only one of them is also persymmetric, and we call it τβ,βϕ,ϕ. We have

τβ,βϕ,ϕ = ξ(ϕ, β,0) =
{
A ∈Mn(C) : CA

(
T β,βϕ,ϕ

)
= CA(J) = 0

}
.(4.4)

(iii) Iβϕ nonsingular: For any ε ∈ C there exists a unique symmetric 1-algebra
containing T β,βε,ϕ . Moreover, if τβ,βε,ϕ denotes such a space, we have

τβ,βε,ϕ = ξ
(
ϕ, β, (ϕ− ε)I−1

βϕe1

)
=
{
A ∈Mn(C) : CA

(
T β,βε,ϕ

)
= 0
}
.(4.5)

Therefore, T β,βε,ϕ is nonderogatory and τβ,βε,ϕ is the set of all polynomials in

T β,βε,ϕ .
Proof of Proposition 4.2(i). Assume that Iβϕ is singular and that ε 6= ϕ. By the

first part of Theorem 2.5, a symmetric 1-algebra containing T β,βε,ϕ is equal to ξ(ϕ, β,p),
where p is such that Iβϕp = (ϕ − ε)e1. Then, by Lemma 4.1, Iβϕ is invertible, that
is, a contradiction.

Proof of Proposition 4.2(ii). Assume that Iβϕ is singular and that ε = ϕ. Then the
vectors p ∈ Cn−1 satisfying the equality Iβϕp = (ϕ−ε)e1 = 0 are infinite and, by the
second part of Theorem 2.5, every space ξ(ϕ, β,p) is a symmetric 1-algebra containing
T β,βϕ,ϕ , and it can be represented as in (4.3). The matrix T β,βϕ,ϕ is derogatory, because

otherwise the set of all polynomials in T β,βϕ,ϕ should be an n-dimensional subspace of
each ξ(ϕ, β,p), which is absurd. Finally, among the ξ(ϕ, β,p)’s, there is only one
containing the matrix J (or, equivalently, for which ξ(en) = J), that is, ξ(ϕ, β,0).

Proof of Proposition 4.2(iii). Assume that Iβϕ is nonsingular. By the second
part of Theorem 2.5, ξ(ϕ, β, (ϕ− ε)I−1

βϕe1) is a symmetric 1-algebra containing T β,βε,ϕ .
By the first part of Theorem 2.5, there is no other symmetric 1-algebra containing
T β,βε,ϕ . As regards the identity (4.5), notice that τβ,βε,ϕ ⊂ {A ∈Mn(C) : CA(T β,βε,ϕ ) = 0}.
Conversely, let A be a matrix commuting with T β,βε,ϕ and consider the space τβ,βε′,ϕ =

ξ(ϕ, β, (ϕ − ε′)I−1
βϕe1), ε′ 6= ε. Then apply Theorem 3.2 for L = τβ,βε,ϕ and L′ = τβ,βε′,ϕ

to the matrix A to obtain (ε− ε′)A = (ε− ε′)τβ,βε,ϕ (ATe1).
Now two interesting classes of matrix algebras S and R, both corresponding to

case (ii) in Proposition 4.2, are investigated. These algebras are also exploited to
state, as special instances of formula (3.1), new efficient decompositions of a generic
centrosymmetric matrix A (Theorem 4.3). Notice that the algebra H, studied in [5]
and related to the Hartley transform, is a particular element of S.
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The class S. Let ϕ = ε = 0 and β = 1 in (4.1)–(4.2). As Ω0(e1 +en−1) = τ(e1 +
en−1) = I+J is singular, by Proposition 4.2(ii) there are infinite symmetric 1-algebras
containing the matrix T 1,1

0,0 , i.e., the spaces ξ(0, 1,pSK), where pSK is an arbitrary

skewsymmetric vector (p̂SK = −pSK). These spaces are denoted by S(·; pSK) and can
be represented as

S(·; pSK) = ξ(0, 1,pSK) = {A ∈Mn(C) : CA(T 1,1
0,0 ) = CA(S(en; pSK)) = 0}.(4.6)

Each algebra S(·; pSK) contains the algebra CS of all n×n symmetric circulant matri-
ces; therefore, by the identity {A : CA(T 1,1

0,0 ) = 0} = C + JC (found in [9]), S(·; pSK)

must be equal to CS + JC̃ for some subset C̃ (depending upon pSK) of the space C
of circulant matrices.

Algebra η. If pSK = 0 we have the space

η = S(·; 0) = ξ(0, 1,0) = τ1,1
0,0 = {A ∈Mn(C) : CA(T 1,1

0,0 ) = CA(J) = 0}.(4.7)

Notice that η = CS + JCS; in fact CS + JCS ⊂ η and

dim(CS + JCS) = dimCS + dimJCS − dimCS ∩ JCS = 2dimCS − dimCS ∩ JCS

=


2
(n

2
+ 1
)
− 2 if n is even,

2

(
n+ 1

2

)
− 1 if n is odd,

that is, dim(CS + JCS) = n.
Algebra H. If pSK = 1

2 (e2 − en−2), we have the space

H = S
(
·; 1

2
(e2 − en−2)

)
= ξ

(
0, 1,

1

2
(e2 − en−2)

)
.(4.8)

Notice that H = CS + JPCSK, where P is the circulant matrix whose first row is
eT2 (P = P1 = C(e2)) and CSK is the set of all n×n skewsymmetric circulant matrices
(a matrix A is skewsymmetric if AT = −A). To prove this fact, first observe that
CS + JPCSK is commutative and that the matrices T 1,1

0,0 and

H(en) = S
(

en;
1

2
(e2 − en−2)

)
= J +

1

2

 0 · · · · · 0
:
τ(e2 − en−2)0

(4.9)

are elements of CS + JPCSK. The commutativity follows from the commutativity of
the space C. Moreover, the matrices 1

2T
1,1
0,0 and JP

(− 1
2 (P − PT )

)
are elements of CS

and JPCSK, respectively, and their sum is the matrix in (4.9). Thus CS + JPCSK ⊂
H. But

dim(CS + JPCSK) = dimCS + dimJPCSK − dimCS ∩ JPCSK

=


(n

2
+ 1
)

+
(n

2
− 1
)
− 0 if n is even,(

n+ 1

2

)
+

(
n− 1

2

)
− 0 if n is odd,

that is, dim(CS + JPCSK) = n, and the identity H = CS + JPCSK is proved. In
[5] it is shown that the matrices of H are simultaneously diagonalized by a similarity
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transformation known as Hartley transform (see also Theorem 5.2 in the next section).
A greater attention has been devoted to this particular real transform since Bracewell
[11, 12] introduced the fast Hartley transform (FHT).

Observe that the proper inclusion H ⊃ CS is exploited in [5] to determine a new
preconditioner of symmetric Toeplitz systems, competitive with the more usual circu-
lant preconditioners (see also [13]). All algebras S(·; pSK) include CS and, besides H,
there may be other algebras S(·; pSK) whose matrices are simultaneously diagonalized
by a fast transform (this is, the case of η = S(·; 0); see Theorem 5.2). As it will be
shown in a forthcoming paper, some of the algebras S(·; pSK) (together with some
other R(·; pS) algebras described below) can lead to other efficient preconditioners of
Toeplitz systems.

The class R. The choice ϕ = ε = 0, β = −1 leads to symmetric 1-algebras—
containing T−1,−1

0,0 —naturally related to those of the class S. These are the following:

R(·; pS) = ξ(0,−1,pS) =
{
A ∈Mn(C) : CA

(
T−1,−1

0,0

)
= CA(R(en; pS)) = 0

}
,

(4.10)
where pS is an arbitrary symmetric vector (p̂S = pS). Each algebra R(·; pS) contains
the algebra CS

−1 of all n × n symmetric (−1)-circulant matrices; therefore, by the

identity {A : CA(T−1,−1
0,0 ) = 0} = C−1 + JC−1 (found in [9]), R(·; pS) = CS

−1 + JC̃−1

for some subset C̃−1 (depending on pS) of the space C−1 of (−1)-circulant matrices.
Algebra µ. If pS = 0, we have the space

µ = R(·; 0) = ξ(0,−1,0) = τ−1,−1
0,0 = {A ∈Mn(C) : CA(T−1,−1

0,0 ) = CA(J) = 0}
(4.11)
naturally related to η. Notice that µ = CS

−1 + JCS
−1; in fact CS

−1 + JCS
−1 ⊂ µ and

dim(CS
−1 + JCS

−1) = dimCS
−1 + dimJCS

−1 − dimCS
−1 ∩ JCS

−1

= 2dimCS
−1 − dimCS

−1 ∩ JCS
−1

=


2
(n

2

)
− 0 if n is even,

2

(
n+ 1

2

)
− 1 if n is odd,

that is, dim(CS
−1 + JCS

−1) = n.
Algebra K. If pS = −1

2 (e2 + en−2), we have the space

K = R
(
·;−1

2
(e2 + en−2)

)
= ξ

(
0,−1,−1

2
(e2 + en−2)

)
(4.12)

naturally related to H. Notice that K = CS
−1 + JP−1C

SK
−1 , where P−1 = C−1(e2) and

CSK
−1 is the set of all n× n skewsymmetric (−1)-circulant matrices. In order to prove

this fact, first show (by proceeding as for H) the inclusion CS
−1 + JP−1C

SK
−1 ⊂ K, and

then use the identity

dim(CS
−1 + JP−1C

SK
−1 ) = dimCS

−1 + dimJP−1C
SK
−1 − dimCS

−1 ∩ JP−1C
SK
−1

=


(n

2

)
+
(n

2

)
− 0 if n is even,(

n+ 1

2

)
+

(
n− 1

2

)
− 0 if n is odd,

= n.
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The matrices of K are simultaneously diagonalized by a similarity transformation
analogue to the Hartley transform (skew-Hartley transform). Also the algebra µ is
associated with a fast discrete transform. (See Theorem 5.2 and the following remark.)
In Theorem 4.3 the most significant displacement decompositions are stated in terms
of the algebras η, µ, H, and K.

Theorem 4.3. If AT 1,1
0,0 − T 1,1

0,0A =
∑α
m=1 xmyTm, then

AS(en; pSK) +R(en; ps)A =
1

2

α∑
m=1

R(xm; pS)S(ym; pSK)

+ S(ATen; pSK) +R(en; ps)S(ATe1; pSK)(4.13)

and, in particular,

AJ + JA =
1

2

α∑
m=1

µ(xm)η(ym) + η((AJ + JA)Te1),(4.14)

AJ +K(en)A =
1

2

α∑
m=1

K(xm)η(ym) + η(ATen) +K(en)η(ATe1),(4.15)

AH(en) + JA =
1

2

α∑
m=1

µ(xm)H(ym) +H(ATen) + JH(ATe1),(4.16)

AH(en) +K(en)A =
1

2

α∑
m=1

K(xm)H(ym) +H(ATen) +K(en)H(ATe1).(4.17)

Proof. For (4.13) set ε = ϕ = ε′ = ϕ′ = 0, β = 1, β′ = −1 in Theorem 3.2. The
particular cases (4.14)–(4.17) correspond, respectively, to the choices pS = pSK = 0,
pS = − 1

2 (e2 + en−2) and pSK = 0, pS = 0 and pSK = 1
2 (e2 − en−2), and pS =

− 1
2 (e2 + en−2) and pSK = 1

2 (e2 − en−2).
If the matrix A is centrosymmetric (i.e., AJ = JA) the formulas (4.14)–(4.16)

give explicit representations of A in terms of the algebras µ, η, H, and K. In fact
the matrices 2J , J + K(en), and J + H(en) are invertible. (It can be shown that
det(J + H(en)) = det(J + K(en)) = (−1)(n−1)/22n if n is odd; det(J + H(en)) =
(−1)n/2n2, det(J + K(en)) = (−1)n/24 if n is even.) Notice that by Proposition

4.2(i) a symmetric 1-algebra containing T β,βε,0 , where β = 1 or β = −1, may exist
only if ε = 0. As a (nonobvious) consequence of this fact, Theorem 3.2 cannot
yield effective representations of a generic matrix A including algebras S(·; pSK) or
R(·; pS). However, Theorem 3.2 yields such generic formulas, also in terms of non-
Hessenberg algebras, if we let both L and L′ be matrix algebras of the type considered
in Proposition 4.2(iii). An example is easily obtained by choosing ϕ′ = ϕ, β′ = β
(in Theorem 3.2) and then—in order to ensure the existence of symmetric 1-algebras

L ⊃ T β,βε,ϕ and L′ ⊃ T β,βε′,ϕ for ε 6= ε′—by requiring Iβϕ in (4.2) to be nonsingular (see
Proposition 4.2). For the sake of brevity we mention only some values of β and ϕ for
which Iβϕ is nonsingular and I−1

βϕ is known (in the sense of Lemma 4.1) for any value

of n: ϕ arbitrary, β = 0 [10]; ϕ = 0, β2 6= 1; ϕ = 2, β = 1; ϕ = −2, β = −1.
Formula (4.14) is exploited in section 5 to state a simple espression of the inverse

of a centrosymmetric Toeplitz-plus-Hankel matrix T + H. This expression allows us
to calculate (T +H)−1f , f ∈ Cn, by performing essentially 10 DFTs reducible to 8 in
the case H = 0, [T−1]11 6= 0, matching both best limits known so far.
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5. Toeplitz-plus-Hankel inversion formulas. Theorem 3.2, the results of the
previous section, and the fact that the rank of CTβ,βε,ϕ

((T + H)−1) is 4 for all values

of ε, ϕ, β (see [26] for the case ε = ϕ = β = 0) yield new representations of the
inverse of a Toeplitz-plus-Hankel matrix T + H (or, more generally, of (T + H)-like
matrices, that is, structured matrices A for which rankCTβ,βε,ϕ

(A) is small with respect

to n). These are similar to other formulas found in [1, 6, 9, 10, 16, 17, 20, 23,
32], but they involve new n-dimensional matrix algebras different from HAs. The
formulas so obtained can be used to solve a linear system (T + H)x = f , f = Cn, in
O(n logn) arithmetic operations (via the computation of (T + H)−1f), provided the
8 vectors defining CTβ,βε,ϕ

((T +H)−1) are known. Here only the centrosymmetric case

is considered in detail.
This approach (compared to a direct triangular factorization of T + H [33, 27])

is significant especially in case a distinction is emphasized between a preprocessing
stage—where only operations on elements of T +H are performed—and a successive
stage of complexity O(n logn), where the linear system (T + H)x = f , f ∈ Cn, is
solved. This distinction is justified when many different linear systems (T +H)x = fi
have to be solved. The same point of view is assumed by Gohberg and Olshevsky in
[21, 22], where the complexity of the computation of Af with preprocessing on A is
studied for different types of structured matrices A, including the case A = T−1 for
a generic Toeplitz T . (Some results on the complexity of the preprocessing stage are
also given in [21, 22].) In particular, they show that the application of T−1 to the
vector f can be accomplished with a cost of 6 DFTs of order n and thus generalize
the analogous result obtained by Ammar and Gader in the Hermitian case [1]. We
mention the fact that if T is symmetric, the above limit can be reduced to 11 DFTs
of order n

2 by using a formula for T−1 involving circulant and (−1)-circulant matrices
of order n

2 (see [15, 17]). Moreover, it is known [10, 16] that 6 discrete transforms are
also enough to compute the product (T +H)−1f , where T +H is a centrosymmetric
Toeplitz-plus-Hankel matrix. This fact is also shown in the present paper by using a
decomposition of (T+H)−1 in terms of Hartley-type matrix algebras (see the remarks
after Theorems 5.1 and 5.2).

Let T , [T ]ij = ti−j , and H, [H]ij = hi+j−2, i, j = 1, . . . , n, be, respectively, a
symmetric Toeplitz and a persymmetric Hankel matrix with complex elements, and
assume that T +H is nonsingular. Then [26]

(T +H)−1T β,βϕ,ϕ − T β,βϕ,ϕ(T +H)−1 = (x1 − ϕe1 − βen)wT
1 + (x̂1 − ϕen − βe1)ŵT

1

− w1(x1 − ϕe1 − βen)T − ŵ1(x̂1 − ϕen − βe1)T ,(5.1)

where w1 and x1 are such that

(T +H)w1 = e1 and (T +H)x1 = [t1 + h−1 t2 + h0 · · · tn + hn−2]T , h−1, tn ∈ C
(see also [16, 10]). Equality (5.1) for β = 0, ϕ = 1 and Theorem 3.2 for ε = ϕ = 1,
ε′ = ϕ′ = −1, β = β′ = 0 let us regain the decomposition of (T +H)−1

2(T +H)−1 = τ−1,−1(x1 + e1)τ1,1(w1)− τ−1,−1(w1)τ1,1(x1 − e1)(5.2)

found in [10]. Moreover, Theorem 3.2 (via Theorem 4.3) yields new decompositions
of (T +H)−1 in terms of the matrix algebras η, µ, H, and K studied in section 4.

Theorem 5.1.

(T +H)−1 =
1

2
{µ(x̂1 + e1)η(w1)− µ(w1)η(x̂1 − e1)},(5.3)
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(T +H)−1 =
1

2
(J +K(en))−1{[K(x1 + en) +K(x̂1 + e1)J ]η(w1)

− [K(w1) +K(ŵ1)J ]η(x1 − en)},(5.4)

(T +H)−1 = {µ(x1 + en)[H(w1) + JH(ŵ1)]

− µ(w1)[H(x1 − en) + JH(x̂1 − e1)]}1

2
(J +H(en))−1.(5.5)

Proof. Exploit (5.1) for ϕ = 0, β = 1 and formulas (4.14), (4.15), and (4.16) of
Theorem 4.3, respectively.

Formulas (5.2)–(5.5) can be used to compute (T +H)−1f by means of a constant
number of DFTs, Hartley-type transforms, trigonometric transforms, or mixed-type
transforms all computable in O(n logn) arithmetic operations (see [5, 11, 10, 34], The-
orem 5.2, and the following remark). In particular, formula (5.3) is competitive with
the formulas found in [16, 10]. In fact, as an immediate consequence of Theorem 5.2,
the matrix by vector product (T + H)−1f , f ∈ Cn, can be calculated by performing
essentially 10 order n DFTs if (T + H)−1 is replaced by its expression in (5.3) and
if x1 and w1 are assumed as known. Moreover, we shall see that, for H = 0 and
w11 = [T−1]11 6= 0, the number of DFTs can be reduced to 8. The limits 10 and 8
are identical to those obtained in [10] with (5.2); however, here the limit 8 is obtained
without the further assumption that the entries of T are real, and the coefficient of n
in the surplus of O(n) operations is smaller. Recall that the limit 8 has been obtained
for the first time by Ammar and Gader in [1]. Both in [1, 16, 10] and in (5.3) the
number of discrete transforms is in any case 6 if the transforms of vectors not depend-
ing upon f are included in the preprocessing stage. Moreover, notice that Rost [32]
obtains a simple representation for the “classical” Hankel Bezoutian (and therefore
for H−1) in terms of τ0,0 and τ0,1 matrices and refers to a future work concerning
with the Toeplitz-plus-Hankel case and with the study of computational properties of
these representations.

In the next theorem, d(z), z ∈ Cn, denotes the n×n diagonal matrix whose (k, k)
element is zk, k = 1, . . . , n, and i is the imaginary unit. Moreover, if A is an n × n
matrix with complex entries, then AH denotes the transposed conjugate of A.

Theorem 5.2. Set ρ = exp(−iπ/n), ρ̄ = ρ−1, ω = ρ2, [F ]ij = 1√
n
ω(i−1)(j−1),

i, j = 1, . . . , n, Dρ = diag(ρi−1, i = 1, . . . , n), and Dω = D2
ρ. Then, for all z ∈ Cn,

η(z) = MηΛ(MT
η z)MH

η , Λ(MT
η z) = d(MT

η z)d(MT
η e1)−1,(5.6)

µ(z) = MµΛ(MT
µ z)MH

µ , Λ(MT
µ z) = d(MT

µ z)d(MT
µ e1)−1,(5.7)

where Mη and Mµ are the unitary matrices:

Mη =
1√
2
F



√
2 0 . . . . . . . 0· ·· · −ω0 1 · ·· · ·· · · · 0· · · · · n

2−1· · ·· ·· 1 0 − ω ·· · · ·· 0
√

2 0 ·· ·· ·n
2+1· · · ·. ω 0 1 .· · · · 0· ·· ·· · ·0 ωn−1 0 · · · 0 1


,(5.8)
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Mµ =
1√
2
DρF



1 0 · · · · · · 0− ρn−1

· · ·
0 1 · · . 0· ·· ··· · 0 0 − ρ3 · ·· · ··· 0 1 − ρ 0 ·
· ·0− ρn−1 1 0· · ·· · 0 0 1 ·· · · · · ·· · · · 0
0 − ρ3 · · ·
−ρ 0 · · · · · · 0 1


(5.9)

for n even, and

Mη =
1√
2
F



√
2 0 · · · · · · · 0· ·
0 1 · · − ω· · · ··· · · · · 0·· 0 0 · ·· ·· n−1

2 · ··· 0 1 − ω 0 ·
· ·n+1

2· 0 ω 1 0 ·· ·· · ·
0 0 · ·· ·· · · · 0· · · ··

0 ωn−1 0 · · · · · 0 1


,(5.10)

Mµ =
1√
2
DρF



n+1
21 0 · · · · · 0 − ω· ·· ·· ·· ·0 . · · . 0· · ·. 1 0 − ωn−1 . ·· · · ·· · ·. 0

√
2 0 ··· ·· · ·· . ω 0 1 · .· . .

0 · · · · 0· · ·· · ·n−1
2ω 0 · · · · 0 1



(5.11)

for n odd. Moreover, for all z ∈ Cn,

H(z) =
√
n H+d(H+z)H+ =

√
n H−d(H−z)H−,(5.12)

K(z) =
√
n K+d(KT

+z)KT
+ =

√
n K−d(KT

−z)KT
−,(5.13)

where H+, H−, K+, and K− are the orthonormal matrices defined by

[H±]ij = (1/
√
n )

(
cos

2π(i− 1)(j − 1)

n
± sin

2π(i− 1)(j − 1)

n

)
,(5.14)

[K±]ij = (1/
√
n )

(
cos

π(i− 1)(2j − 1)

n
± sin

π(i− 1)(2j − 1)

n

)
,(5.15)

i, j = 1, . . . , n.
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Proof. The equalities (5.6) and (5.7) are shown only in the case n even (n = 2m).
In the case n odd, the proof is similar. Notice that in order to find the matrices in
(5.8), (5.10) and (5.9), (5.11), we had to look for a matrix diagonalizing J among the
matrices diagonalizing T 1,1

0,0 and T−1,−1
0,0 , respectively.

Let us prove (5.6). Set ci =
√
nFei, i = 1, . . . , n. By using the identities ĉi =

ωn−i+1cn−i+2, i = 2, . . . ,m (recall that, for a vector z, ẑ = Jz), one can easily show
that

Mη =
1√
2n

[
√

2c1 c2 + ĉ2 · · · cm + ĉm
√

2cm+1 cm+2 − ĉm+2 · · · cn − ĉn].(5.16)

Moreover, as T 1,1
0,0 = P1 + PH1 and P1 = FDωF

H , T 1,1
0,0F = F (Dω +DH

ω ), i.e.,

T 1,1
0,0 [c1 c2 · · · cn] = [c1 c2 · · · cn] diag(2 cos

2π(j − 1)

n
, j = 1, . . . , n).(5.17)

By the centrosymmetry of T 1,1
0,0 (besides cj) also ĉj is an eigenvector of T 1,1

0,0 with

associated eigenvalue 2 cos 2π(j−1)
n . This remark and equalities (5.17) and (5.16) allow

us to say that

T 1,1
0,0Mη = Mη diag

(
2 cos

2π(j − 1)

n
, j = 1, . . . , n

)
.(5.18)

From (5.16) it also follows that

η(en)Mη = JMη = Mη

(
I O

O −I

)
,(5.19)

where the I in (5.19) is the m × m identity matrix (ĉ1 = c1, ĉm+1 = −cm+1).
By exploiting, respectively, (5.18) and (5.19), we have that the matrix Mηd(MT

η z)

d(MT
η e1)−1MH

η commutes with the matrices T 1,1
0,0 and J ∀z ∈ Cn. Moreover, as

MηM
H
η = I, its first row is zT , and therefore, by (4.7), we have η(z) = Mηd(MT

η z)

d(MT
η e1)−1MH

η .
Let us prove (5.7). Set ci =

√
nDρFei, i = 1, . . . , n. The identities ĉi =

−ρ̄2i−1cn+1−i, i = 1, . . . ,m, yield

Mµ =
1√
2n

[c1 + ĉ1 · · · cm + ĉm cm+1 − ĉm+1 · · · cn − ĉn].(5.20)

Moreover, as T−1,−1
0,0 = P−1+PH−1 and P−1 = DρFρDωF

HDH
ρ , we have T−1,−1

0,0 DρF =

DρF (ρDω + ρ̄DH
ω ), i.e.,

T−1,−1
0,0 [c1 c2 · · · cn] = [c1 c2 · · · cn] diag

(
2 cos

π(2j − 1)

n
, j = 1, . . . , n

)
.(5.21)

As in the case of (5.6), the equalities (5.21) and (5.20) yield

T−1,−1
0,0 Mµ = Mµ diag

(
2 cos

π(2j − 1)

n
, j = 1, . . . , n

)
,

µ(en)Mµ = JMµ = Mµ

(
I O

O −I

)
,
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where I is the m ×m identity matrix. Thus the matrix Mµd(MT
µ z)d(MT

µ e1)−1MH
µ

commutes with the matrices T−1,−1
0,0 and J ∀z ∈ Cn. Moreover, as MµM

H
µ = I, its

first row is zT and therefore, by (4.11), we have µ(z) = Mµd(MT
µ z)d(MT

µ e1)−1MH
µ .

Finally, let us prove (5.13). This proof is analogous to the proof of the first
equality in (5.12), which is in [5]. Notice that DρF = 1√

n
(M − iN), where [M ]ij =

cos π(i−1)(2j−1)
n and [N ]ij = sin π(i−1)(2j−1)

n , i, j = 1, . . . , n. Moreover, from the

identities (DρF )HDρF = I and (DρF )TDρF = J , we have

MTM +NTN = nI and MTN +NTM = 0,

respectively. Observe that K+ = 1√
n

(M + N)
[
K− = 1√

n
(M −N)

]
. Thus, by the

above equalities, KT
+K+ = I [KT

−K− = I]. Moreover M = MJ = −JP−1M and
−N = NJ = −JP−1N ; therefore, K+J = −JP−1K+ [K−J = −JP−1K−].

Let A be a generic (−1)-circulant matrix. We know that (DρF )HADρF = DA,
where DA is a diagonal matrix and thus

ReDA =
1

n
(MTAM +NTAN), ImDA =

1

n
(NTAM −MTAN).(5.22)

From (5.22) it follows that if A is a (−1)-circulant matrix, then

KT
+AK+ = ReDA − JImDA [KT

−AK− = ReDA + JImDA].

Now let E be a generic element of K = CS
−1 +JP−1C

SK
−1 and assume that the entries of

E are real, i.e., E = ES
−1 + JP−1E

SK
−1 , where ES

−1 is a real symmetric (−1)-circulant
matrix and ESK

−1 is a real skewsymmetric (−1)-circulant matrix. Observe that the
eigenvalues of ES

−1 is a real skewsymmetric (−1)-circulant matrix. Observe that the
eigenvalues of ES

−1 and ESK
−1 are, respectively, real and purely imaginary. Thus

KT
+EK+ = KT

+E
S
−1K+ +KT

+JP−1E
SK
−1K+ = KT

+E
S
−1K+ − JKT

+E
SK
−1K+

= ReDES
−1

+ ImDESK
−1[

KT
−EK− = ReDES

−1
− ImDESK

−1

]
.

We have proved that KT
±EK± = d(z±E) for some z±E ∈ Rn. The thesis, in the real case,

follows from the equalities eT1 EK± = eT1 K±d(z±E) = z±TE d(KT
±e1) = 1√

n
z±TE . For

the complex case, simply observe that if z ∈ Cn, then z = z1 + iz2, where z1, z2 ∈ Rn,
and that K(z) = K(z1 + iz2) = K(z1) + iK(z2).

Remark. If n is an integer power of 2, then the skew-Hartley transform
√
nK±z

(
√
nKT

±z), z ∈ Rn, can be computed in at most 3
2n log2 n additions and n log2 n

multiplications of real numbers, i.e., with the same cost of the Hartley transform√
nH±z. (For this last transform, see [5] and the references cited therein.) In fact,

for K
(n)
± = K± we have

K
(n)
± =

1√
2
Q

 K
(n2 )
± K

(n2 )
±

K
(n2 )
± R± −K(n2 )

± R±

 ,

where R± = diag(cos (2j−1)π
n , j = 1, . . . , n2 ) ± J diag(sin (2j−1)π

n , j = 1, . . . , n2 ) and
Q is the permutation matrix Qej = e2j−1, Qen−j+1 = en−2j+2, j = 1, . . . , n2 . (For
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H
(n)
± = H± an analogous identity holds, where R± = diag(cos 2π(j−1)

n , j = 1, . . . , n2 )±
JPβ diag(sin 2π(j−1)

n , j = 1, . . . , n2 ).
If H = 0 and w11 = [T−1]11 6= 0, then x1 = −(1/w11)P0w1 [25] (see also [16]).

By exploiting this fact and the identities (5.6) and (5.7) in Theorem 5.2, formula (5.3)
becomes

T−1 =
1

2w11
{µ(w1)η(JP1w1)− µ(JP−1w1)η(w1)}(5.23)

=
1

2w11
Mµ{Λ(MT

µ w1)MH
µ MηΛ(MT

η JP1w1)

− Λ(MT
µ JP−1w1)MH

µ MηΛ(MT
η w1)}MH

η .

Observe that the vectors z in the four matrices Λ(z) appearing in this last formula can
be computed in O(n) arithmetic operations once that Fw1 and FDρw1 are calculated
(use the identities F (JP1)w1 = (JP1)Fw1 and FDρ(JP−1)w1 = −JFDρw1). Thus,
if w1 is known, the vector T−1f , f ∈ Cn, can be computed by performing eight DFTs
plus O(n) arithmetic operations.

In [1] Ammar and Gader obtain the same result by exploiting the representation
in terms of circulant and (−1)-circulant matrices

T−1 =
1

2w11
{C−1(w1)C(w1)T + C−1(w1)TC(w1)},(5.24)

which is a consequence of the following formula, holding for a generic nonsingular
Toeplitz matrix T = (ti−j)ni,j=1,

T−1 =
1

2
{C−1(ŵn)C(e1 − x̂1) + C−1(e1 + x̂1)C(ŵn)},(5.25)

where wn = T−1en and Tx1 = [t1 t2 · · · tn]T , tn ∈ C (see also [16]). Formulas
of type (5.25), generalizing the Ammar–Gader formula (5.24), were first derived by
Gohberg and Olshevsky in [20, 22]. Notice that, by using formula (5.25) or the
analogous formulas in [20, 22], the product T−1f for a generic T can be calculated
with essentially 10 order n DFTs [21, 22], i.e., with the same amount of computation
required to compute (T +H)−1f for T = TT and H = JHJ via (5.3). Both in (5.24),
(5.25) and in (5.3), (5.23) the number of discrete transforms is 6 if the transforms of
vectors not depending upon f are included in the preprocessing stage. Thus formulas
(5.3) and (5.23) seem to be the analogues of the Ammar–Gader–Gohberg–Olshevsky-
type formulas for the centrosymmetric Toeplitz-plus-Hankel case.
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