3,780 research outputs found

    Testing Feedback-Modified Dark Matter Haloes with Galaxy Rotation Curves: Estimation of Halo Parameters and Consistency with Λ\LambdaCDM

    Full text link
    Cosmological NN-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW, Navarro et al. 1996). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high resolution, cosmological hydrodynamic simulations (Di Cintio et al. 2014, DC14) predict that inner density profiles depend systematically on the ratio of stellar to DM mass (M_*/Mhalo_{\text{halo}}). Using a Markov Chain Monte Carlo approach, we test the NFW and the M_*/Mhalo_{\text{halo}}-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new {\it Spitzer} Photometry and Accurate Rotation Curves (SPARC) data set. These galaxies all have extended H{\small I} rotation curves from radio interferometry as well as accurate stellar mass density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ\LambdaCDM and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from Λ\Lambda cold dark matter (Λ\LambdaCDM) cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.Comment: 23 Pages, 18 Figures, MNRAS Accepte

    Availability of open data related to COVID-19 epidemic in Italy

    Get PDF
    Since the beginning of the COVID-19 outbreak in Italy, health authorities have released epidemiologic data about this disease. These data were the most important sources of information which were periodically updated and analyzed by researchers to predict the spread of the epidemic. However, comprehensive and timely data on the evolution of COVID-19 have not always been made available to researchers and physicians

    Ascending non-Newtonian long drops in vertical tubes

    Get PDF
    We report on theoretical and experimental studies describing the buoyancy-driven ascent of a Taylor long drop in a circular vertical pipe where the descending uid is Newtonian, and the ascending uid is non-Newtonian yield-shear-thinning and described by the threeparameter Herschel-Bulkley model, including the Ostwald-deWaele (OdW) model as a special case for zero yield. Results for the Ellis model are included to provide a more realistic description of purely shear-thinning behaviour. In all cases, lubrication theory allows obtaining the velocity pro les and the corresponding integral variables in closed form, for lock-exchange ow with a zero net ow rate. The energy balance allows deriving the asymptotic radius of the inner current, corresponding to a stable node of the di erential equation describing the time evolution of the core radius. We carried out a series of experiments measuring the rheological properties of the uids, the speed and the radius of the ascending long drop. For some tests, we measured the velocity pro le with Ultrasound velocimetry technique. The measured radius of the ascending current compares fairly well with the asymptotic radius as derived through the energy balance, and the measured ascent speed shows a good agreement with the theoretical model. The measured velocity pro les also agree with their theoretical counterparts. We have also developed dynamic similarity conditions to establish whether laboratory physical models, limited by availability of real uids with de ned rheological characteristics, can be representative of real phenomena on a large scale, such as exchanges in volcanic conduits. The Appendix contains scaling rules for the approximated dynamic similarity of the physical process analysed; these rules serve as a guide for the design of experiments reproducing real phenomena

    Ascending non-Newtonian long drops in vertical tubes

    Get PDF
    We report on theoretical and experimental studies describing the buoyancy-driven ascent of a Taylor long drop in a circular vertical pipe where the descending fluid is Newtonian, and the ascending fluid is non-Newtonian yield shear thinning and described by the three-parameter Herschel–Bulkley model, including the Ostwald–de Waele model as a special case for zero yield. Results for the Ellis model are included to provide a more realistic description of purely shear-thinning behaviour. In all cases, lubrication theory allows us to obtain the velocity profiles and the corresponding integral variables in closed form, for lock-exchange flow with a zero net flow rate. The energy balance allows us to derive the asymptotic radius of the inner current, corresponding to a stable node of the differential equation describing the time evolution of the core radius. We carried out a series of experiments measuring the rheological properties of the fluids, the speed and the radius of the ascending long drop. For some tests, we measured the velocity profile with the ultrasound velocimetry technique. The measured radius of the ascending current compares fairly well with the asymptotic radius as derived through the energy balance, and the measured ascent speed shows a good agreement with the theoretical model. The measured velocity profiles also agree with their theoretical counterparts. We have also developed dynamic similarity conditions to establish whether laboratory physical models, limited by the availability of real fluids with defined rheological characteristics, can be representative of real phenomena on a large scale, such as exchanges in volcanic conduits. Appendix B contains scaling rules for the approximated dynamic similarity of the physical process analysed; these rules serve as a guide for the design of experiments reproducing real phenomena

    The propagation of gravity currents in a circular cross-section channel: experiments and theory

    Get PDF
    High-Reynolds number gravity currents (GC) in a horizontal channel with circular/semicircular side walls are investigated by comparing experimental data and shallow-water (SW) theoretical results. We focus attention on a Boussinesq system (salt water in fresh water): the denser fluid, occupying part of the depth or the full depth of the ambient fluid which fills the remaining part of the channel, is initially at rest in a lock separated by a gate from the downstream channel. Upon the rapid removal of the gate (‘dam break’), the denser ‘current’ begins propagating into the downstream channel, while a significant adjustment motion propagates upstream in the lock as a bore or rarefaction wave. Using an experimental channel provided by a tube of 19 cm diameter and up to 615 cm length, which could be filled to various levels, we investigated both full-depth and part-depth releases, considered the various stages of inertial-buoyancy propagation (in particular, the initial ‘slumping’ with constant speed, and the transition to the late self-similar propagation with time to the power 3=4), and detected the transition to the viscous-buoyancy regime. A first series of tests is focused on the motion in the lock while a second series of tests is focused on the evolution of the downstream current. The speed of propagation of the current in the slumping stage is overpredicted by the theory, by about the same amount (typically 15 %) as observed in the classical flat bottom case. The length of transition to viscous regime turns out to be TRe0.h0=x0/U (Re0 D .g0h0/1=2h0= c is the initial Reynolds number, g0 is the reduced gravity, c is the kinematic viscosity of the denser fluid, h0 and x0 are the height of the denser current and the length of the lock, respectively), with the theoretical D3=8 and experimental 0:27

    Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling

    Get PDF
    We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition

    The association between first and second wave COVID-19 mortality in Italy

    Get PDF
    Background: The relation between the magnitude of successive waves of the COVID-19 outbreak within the same communities could be useful in predicting the scope of new outbreaks. Methods: We investigated the extent to which COVID-19 mortality in Italy during the second wave was related to first wave mortality within the same provinces. We compared data on province-specific COVID-19 2020 mortality in two time periods, corresponding to the first wave (February 24\u2013June 30, 2020) and to the second wave (September 1\u2013December 31, 2020), using cubic spline regression. Results: For provinces with the lowest crude mortality rate in the first wave (February\u2013June), i.e. < 22 cases/100,000/month, mortality in the second wave (September\u2013December) was positively associated with mortality during the first wave. In provinces with mortality greater than 22/100,000/month during the first wave, higher mortality in the first wave was associated with a lower second wave mortality. Results were similar when the analysis was censored at October 2020, before the implementation of region-specific measures against the outbreak. Neither vaccination nor variant spread had any role during the study period. Conclusions: These findings indicate that provinces with the most severe initial COVID-19 outbreaks, as assessed through mortality data, faced milder second waves

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing
    corecore