332 research outputs found

    Homogeneous and inhomogeneous magnetic phases of constrained dipolar bosons

    Full text link
    We study the emergence of several magnetic phases in dipolar bosonic gases subject to three-body loss mechanism employing numerical simulations based on the density matrix renormalization group(DMRG) algorithm. After mapping the original Hamiltonian in spin language, we find a strong parallelism between the bosonic theory and the spin-1 Heisenberg model with single ion anisotropy and long-range interactions. A rich phase diagram, including ferromagnetic, antiferromagnetic and non-local ordered phases, emerges in the half-filled one-dimensional case, and is preserved even in presence of a trapping potential.Comment: v2: 9 pages, 15 figures, extended version, new numerical calculations on the BKT transition, accepted for pubblication in PR

    Discrete fourier transform-based TOA estimation in UWB systems

    Get PDF
    In this paper, we propose two time of arrival estimators for ultra wideband signals based on the phase difference between the discrete Fourier transforms (DFT) of the transmitted and received signals. The first estimator is based on the slope of the unwrapped phase and the second one on the absolute unwrapped phase. We derive the statistics of the unwrapped phase. We show that slope-based estimation almost achieves asymptotically the baseband Cramer-Rao lower bound (CRLB), while the absolute-phase-based estimator achieves asymptotically the passband CRLB. We compare the proposed estimators to the time-domain maximum likelihood estimator (MLE). We show that the MLE achieves the CRLB faster than the DFT-based estimator, while the DFT-based estimator outperforms the MLE for low signal to noise ratios. We describe also how to use the proposed estimators in multipath UWB channels

    Effective mapping of spin-1 chains onto integrable fermionic models. A study of string and Neel correlation functions

    Full text link
    We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles related in turn to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by algebraic factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a 'dual' fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we find a finite characteristic length which is an unexpected feature at the critical point. We also comment briefly the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.Comment: 28 pages, plain LaTeX, 2 EPS figure

    Special Issue on Frontiers in Hybrid Vehicles Powertrain

    Get PDF
    Editoria

    Spontaneous Peierls dimerization and emergent bond order in one-dimensional dipolar gases

    Get PDF
    We investigate the effect of dipolar interactions in one-dimensional systems in connection with the possibility of observing exotic many-body effects with trapped atomic and molecular dipolar gases. By combining analytical and numerical methods, we show how the competition between short- and long-range interactions gives rise to frustrating effects which lead to the stabilization of spontaneously dimerized phases characterized by a bond ordering. This genuine quantum order is sharply distinguished from Mott and spin-density-wave phases, and can be unambiguously probed by measuring nonlocal order parameters via in situ imaging techniques

    Neural Correlates of Direct Access Trading in a Real Stock Market: An fMRI Investigation

    Get PDF
    Background: While financial decision making has been barely explored, no study has previously investigated the neural correlates of individual decisions made by professional traders involved in real stock market negotiations, using their own financial resources. Aim: We sought to detect how different brain areas are modulated by factors like age, expertise, psychological profile (speculative risk seeking or aversion) and, eventually, size and type (Buy/Sell) of stock negotiations, made through Direct Access Trading (DAT) platforms. Subjects and methods: Twenty male traders underwent fMRI while negotiating in the Italian stock market using their own preferred trading platform. Results: At least 20 decision events were collected during each fMRI session. Risk averse traders performed a lower number of financial transactions with respect to risk seekers, with a lower average economic value, but with a higher rate of filled proposals. Activations were observed in cortical and subcortical areas traditionally involved in decision processes, including the ventrolateral and dorsolateral prefrontal cortex (vlPFC, dlPFC), the posterior parietal cortex (PPC), the nucleus accumbens (NAcc), and dorsal striatum. Regression analysis indicated an important role of age in modulating activation of left NAcc, while traders' expertise was negatively related to activation of vlPFC. High value transactions were associated with a stronger activation of the right PPC when subjects' buy rather than sell. The success of the trading activity, based on a large number of filled transactions, was related with higher activation of vlPFC and dlPFC. Independent of chronological and professional age, traders differed in their attitude to DAT, with distinct brain activity profiles being detectable during fMRI sessions. Those subjects who described themselves as very self-confident, showed a lower or absent activation of both the caudate nucleus and the dlPFC, while more reflexive traders showed greater activation of areas involved in strategic decision making. Discussion: The neural correlates in DAT are similar to those observed in other decision making contexts. Trading is handled as a well-learned automatic behavior by expert traders; for those who mostly rely on heuristics, cognitive effort decreases, and transaction speed increases, but decision efficiency lowers following a poor involvement of the dlPFC

    Meissner to vortex phase transition in a two-leg ladder in artificial gauge field

    Get PDF
    International audienceWe consider a two-leg boson ladder in artificial gauge field with hard-core intraleg and negligible interleg interactions. Using numerical simulations based on the Density Matrix Renormalization Group (DMRG) algorithm, combined with a bosonization approach, we study its commensurate-incommensurate transition to a vortex phase at a critical flux. We discuss the finite-size scaling behavior of the longitudinal current near the transition. For weak interchain bo-son hopping, the finite size scaling is in agreement with the predictions from bosonization

    Vector and Tensor Contributions to the Luminosity Distance

    Full text link
    We compute the vector and tensor contributions to the luminosity distance fluctuations in first order perturbation theory and we expand them in spherical harmonics. This work presents the formalism with a first application to a stochastic background of primordial gravitational waves.Comment: 14 pages, 3 figure

    Effects of Probiotics Supplementation on Risk and Severity of Infections in Athletes: A Systematic Review

    Get PDF
    The aim of this review was to appraise the literature on the effects of probiotics supplementation on gastrointestinal (GI) and upper respiratory tract infection (URTI) risk and prognosis in athletes. The search was conducted using the following electronic databases: MEDLINE (PubMed); Web of Science; Scopus; and SPORTDiscus (EBSCO). According to the PRISMA guidelines, randomized controlled studies performed on healthy athletes with a note dose of probiotics supplementation were considered. From the 2304 articles found, after eliminating reviews and studies on animals and unhealthy subjects and after screening of titles and abstracts, 403 studies were considered eligible. From these, in accordance with the inclusion and exclusion criteria, 16 studies were selected, ten of which concerned endurance athletes. The majority of the studies reported beneficial effects of probiotics in reducing the risk of developing the examined infections or the severity of related symptoms. However, due to the differences in formulations used and populations analyzed in the available studies, further research is needed in this field to achieve stronger and more specific evidence
    corecore