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We investigate the effect of dipolar interactions in one-dimensional systems in connection with the possibility
of observing exotic many-body effects with trapped atomic and molecular dipolar gases. By combining analytical
and numerical methods, we show how the competition between short- and long-range interactions gives rise to
frustrating effects which lead to the stabilization of spontaneously dimerized phases characterized by a bond
ordering. This genuine quantum order is sharply distinguished from Mott and spin-density-wave phases, and can
be unambiguously probed by measuring nonlocal order parameters via in situ imaging techniques.
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I. INTRODUCTION

Cold atom gases confined in reduced dimensionality repre-
sent an ideal system to observe many-body phenomena related
to the prominent role played by quantum fluctuations [1,2].
Recent experimental advances have paved the way to the
investigation of quantum magnetism, notable examples being
the demonstration of superexchange interactions in bosonic
gases [3], the time evolution of spin impurities [4,5], the obser-
vation of frustrated classical dynamics [6], and the engineering
of Ising [7] and anisotropic exchange Hamiltonians [8].

New opportunities in this direction are now stimulated by
the prominent progress in cooling and controlling ultracold
gases of magnetic atoms and polar molecules, which provide
tunable platforms where the effect of long-ranged dipolar
interactions can play a dominant role in determining the
many-body dynamics [9–13]. Such progress has opened a new
door for the investigation of lattice models beyond the conven-
tional Hubbard paradigm, where long-range interactions can
compete with local ones on the way to unveil richer many-body
physics [14–16]. Much attention has been devoted up to now
to extended Bose-Hubbard models, where a new phase of
matter, the Haldane insulator (close analog of the Haldane
phase in spin-1 chains), has been predicted to occur [17–20].
However, not much is known on other possible magnetic
phases for fermionic dipolar gases in optical lattices [16],
which present close analogy to the so-called extended Hubbard
model (EHM) [21–31].

In this article we show that one-dimensional (1D) Hubbard
models with long-range interactions support a nontrivial
insulating phase characterized by bond order [24,26,28,31]
[a bond-order density wave (BOW)] due to the competition
between dipolar and on-site interactions. This phase has
attracted notable interest in recent years in the context of
strongly correlated electron systems. Its existence is now well
established but it has been long debated in a series of theoretical
studies [24–31]. The opportunity of realizing and observing
such states of matter may shed new light on a series of issues,
from its dynamical properties to its ground state robustness.
In order to prove its existence in dipolar Hubbard models, we
combined analytical and state-of-the-art numerical methods

based on the density-matrix renormalization group (DMRG)
algorithm [32,33]. Remarkably, the effect of dipolar interaction
is evident already in the weak-coupling approach, leading
to the prediction of a BOW phase within one-loop order.
This is in sharp contrast with standard EHMs—on-site and
nearest-neighbor interaction only—where a simple formalism
is instead unable to capture its existence [24]. While the
detection of the BOW phase is in general challenging due to the
limited extension in parameter space and its lack of density like
order parameters, we show how the recently developed in situ
imaging techniques [34,35] provide an ideal route toward the
unbiased identification of such phases since the BOW phase is
uniquely identified by the long-range order of nonlocal parity
correlations [36,37].

II. SPIN-1/2 DIPOLAR FERMI GAS

Dipolar particles confined in a one-dimensional tube can be
described by the following microscopic Hamiltonian:

H =
∫

dx
∑

σ=1,2

{
ψ†

σ (x)

[
− �

2

2m
∂2
x

]
ψσ (x)

}

+
∑
σ,σ ′

∫
dx dy{ρσ (x)[V(x,y) +Uδ(x,y)]ρσ ′ (y)}, (1)

where m is the particle mass, ψ†
σ (ψσ ) are creation (anni-

hilation) operators of σ = 1,2 fermions, and ρσ = ψ†
σψσ .

The short-distance contribution of interspecies interactions U
can be tuned by using Feshbach resonances or confinement
induced, while the dipolar interaction V is controlled by
means of electric (polar molecules) or magnetic (magnetic
atoms) fields [16]. The pseudospin degree of freedom can
either be represented by different mF states (for atoms), or by
preparing molecules in different nuclear or rotor states [38].
Once confined on a sufficiently deep optical lattice, an effective
description in terms of the Hubbard Hamiltonian leads to the
discrete formulation

H = H1 + H2 + H12 (2)
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(see, e.g., [1]), where the single species contributions read

Hσ = −
∑

i

t(c†σ,icσ,i + 1 + H.c.) +
∑
i<j

V (i−j )nσ,inσ,j , (3)

with the first and second terms describing tunneling and dipolar
interactions, respectively, and the interspecies coupling is

H12 = U
∑

i

n1,in2,i +
∑
i �=j

V (i − j )n1,in2,j , (4)

where the first term is the on-site interaction U (given by a com-
bination of local and dipolar potentials), and the last term de-
scribes interspecies dipolar interactions. From here on, we will
focus on purely repulsive dipoles, V (i − j ) = V/(|i − j |)3, as
relevant, e.g., for electrically polarized molecular gases. In
the equal mass, equal interaction case, the system inherits a
global SU(2) symmetry, which is preserved by the long-range
tail, and is reduced to U(1) for general parameter choices.
From here on, we will focus on the former case and consider a
balanced half-filled chain, N1 = N2 = N/2 = L/2, where Nσ

is the number of particles in the spin state σ and L the system
size. Like in the case of the EHM, the phase diagram of Eq. (2)
is determined by the competition between local and nonlocal
interactions. Before searching for specific BOW instabilities,
we illustrate the competing mechanism in the atomic limit
t = 0, as such competition will then lead to spin frustration at
the origin of bond order itself.

For dominant U interactions, the system ground state is
a spin-density wave (SDW). On the other hand, a dominant
dipolar interaction will minimize the energy by imposing
double occupancies every second site, thus stabilizing a
fully gapped charge-density wave (CDW). These two ground
states, illustrated in the insets of Fig. 1, become energetically
degenerate along the line U (cl)

c = 3ζ (3)V/2 (ζ is the Riemann
zeta function), which determines a phase transition between
SDW and CDW. Deeply in the quantum regime t � V � U ,

0 1 2 3 4
U/t

1

2

V/t

SDW

CDW

BOW

FIG. 1. (Color online) Numerical phase diagram for dipolar mix-
tures described by the Hubbard Hamiltonian in Eq. (2). In between a
CDW and a SDW phase, a region with dominant bond order develops
close to the line U � V 3ζ (3)

2 ; the CDW-BOW and BOW-SDW
transitions are of the Gaussian and Berezinskij-Kosterlitz-Thouless
type, respectively. Errors in determining phase transition points are
smaller than symbol sizes. The arrows in the cartoons denote the
alignment of the dipoles, while green (light gray) and blue (dark
gray) points represent the internal spin.

however, quantum fluctuations may enhance the emergent
frustration close to the classical transition line and lead
to a different critical scenario. For the EHM, where only
nearest-neighbor interactions are considered, it was argued
by Nakamura [24] that an additional phase with dominant
charge bond-order instability occurs between the SDW and the
CDW phases. This phase is characterized by a spontaneous
spin-Peierls dimerization, manifest in a charge polarization
on alternating bonds and by the formation of spin dimers on
the bonds, and constitutes a notable example of dimerization
in strongly correlated systems due to frustration. A two-
dimensional analog of this phase has been recently discussed
for spinless dipolar fermions in layers [39].

The existence and extent of the BOW phase in the EHM
have been intensively debated mainly because (i) the instability
is not captured by one-loop g-ology calculations based on
bosonization (while more refined methods recently provided
analytical evidence of it [26,30]), and (ii) numerical results
were not consistent due to the small extent in parameter
space of such a phase, and to the difficulty of providing
an accurate location of the critical line [24,27,28,31]. In the
following, combining analytical and numerical methods, we
show that dipolar systems support spontaneous spin-Peierls
dimerization, and that the corresponding BOW phase occupies
a larger region in parameter space with respect to the EHM.
First of all, we show that one-loop g-ology is sufficient to
establish the existence of bond order in the weak-coupling
regime. Then, the existence and extent of the BOW phase are
benchmarked with DMRG simulations.

III. LOW-ENERGY FIELD THEORY

We now present a qualitative study of Eq. (2) within the
bosonization framework [40]. As a first step, we express the
fermionic lattice operators in terms of continuum chiral fields
ψ

†
R/L(x):

c
†
j,σ = √

a[ψ†
R,σ (x)eikF x + ψ

†
L,σ (x)e−ikF x], (5)

with x = ja, a being the lattice spacing and kF = πN/(2La)
the Fermi momentum. We then apply the standard bosonization
mapping introducing density and phase fluctuation fields
ϕσ ,ϑσ for the two species in order to map the original fermionic
problem onto a bosonic one:

ψR,σ = ηR,σ√
2πa

e−i[ϕσ −ϑσ ], ψL,σ = ηL,σ√
2πa

ei[ϕσ +ϑσ ], (6)

where ηr,σ are the so-called Klein factors. Typically, the
bosonization mapping is applied to the microscopic Hamil-
tonian, taking as a starting point noninteracting fermions, and
thus deriving the effective parameters in the low-energy theory
in a perturbative manner, limiting the validity to the regime
V,U � t . Here we take advantage of recent analytical and
numerical results, and explore an alternative route to derive
the coefficients in the effective low-energy theory, typical,
e.g., in the Landau theory of Fermi liquids [41]. Our starting
point is the single species Hamiltonians, Eq. (3), and not the
free tunneling Hamiltonians as usual. In their gapless regime,
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i.e., when V/t � 2ζ (3), their bosonized form reads

Hσ = �v

2

∫
dx

[
(∂xϕσ )2

K
+ K(∂xϑσ )2

]
. (7)

The single-species Luttinger parameter is well approximated
by the continuum theory estimate K=(1 + 1.46n ∗ V/t)−1/2

[42–45]. While this result strictly holds in the continuum,
its quantitative behavior has been verified also in lattice
calculations [46], as far as the crystalline instability is not
approached. This ensures a controlled estimate of K in
the regime V/t � 1, and possibly beyond. We notice that
embodying interactions in a nonperturbative (although approx-
imate) manner in bosonized Hamiltonians is an established
procedure, which allows one to retain features usually missing
in perturbative treatments (see, e.g., [40]).

We then proceed and, on the top of the interacting single-
species Hamiltonian, we consider the role of H12. We first
introduce density and spin collective fields:

ϕc/s = ϕ1 ± ϕ2√
2

, ϑc/s = ϑ1 ± ϑ2√
2

. (8)

After bosonizing the interspecies interaction H12, the Hamil-
tonian H can be decoupled into a density and spin sector,
H = Hc + Hs , where the physics in each sector is described
by a sine-Gordon model:

Hc/s = �vc/s

2

∫
dx

[
(∂xϕc/s)2

Kc/s

+ Kc/s(∂xϑc/s)
2

]

+ gc/s

∫
dx cos[

√
8πϕc/s]. (9)

Notice that terms coupling density and spin degrees of freedom
are also present; in the following we will neglect their effects,
which are supposed to be small away from the regime V,U � t

due to their large scaling dimension. The coefficients in Hc/s

can be extracted treating H12 as a perturbation on the top
of the decoupled H1 and H2; here, the local interactions
are treated as in the conventional Hubbard model [40]. In
the spin sector, we compute the effect of the interspecies
interactions on the quadratic part of the Hamiltonian, and
then fix the coefficient of the mass term by imposing SU(2)
symmetry, which has to be retained exactly at low energies.
A similar procedure is illustrated in Ref. [40] in the context
of the EHM model: here, the SU(2) symmetry is recovered by
fixing gs = 1 − 1/Ks . The sine-Gordon model then supports
a Berezinskij-Kosterlitz-Thouless (BKT) transition [40] at
Ks = 1, that, from its microscopic form, is

Ks =
√

K

(
1

K
− U + 2ζ (3)V

2πt

)−1

. (10)

At weak coupling, the transition occurs at V (BKT)
c �

U/2.18. In the charge sector, the Luttinger parameter Kc =√
K/( 1

K
+ U+2ζ (3)V

2πt
) always satisfies Kc < 1 (since K < 1):

as such, phase transitions in this sector only depend on the
coefficient gc. In particular, gc = 0 defines a Gaussian phase
transition line between phases where the cosine potential in
Hc is pinned at different values (at strong coupling, this line
can be unstable toward 4kF mass terms when Kc < 1/4). The

perturbative estimate of gc reads

gc ∝ U − 2V

∞∑
j=1

[
1

(2j − 1)3
− 1

(2j )3

]
= U − 3ζ (3)V

2
.

(11)

implying a weak-coupling Gaussian transition at V (G)
c �

U/1.80. The phase diagram can be subsequently mapped out
by considering the dominant orders as in the case of the
EHM. Since we have applied the same mapping procedure
and got a similar low-energy field theory, the different phases
are characterized by the same field structure as in Ref. [24].
For V � U/2.18, the system is in a SDW phase, with a
gapless spin sector and dominant correlations of the form
〈(n↑,i − n↓,i)(n↑,i+x − n↓,i+x)〉. On the other hand, a (mass)
density wave is formed above the critical value V > V (G)

c ,
where the dominant correlations are of the form 〈(n↑,i +
n↓,i)(n↑,i+x + n↓,i+x)〉. In the intermediate regime V (BKT)

c <

V < V (G)
c , neither SDW nor CDW order are stable, and the

system exhibits a BOW, characterized by both a finite spin and
density gap, and a dominant order described by the parameter

〈Bi〉 =
〈

1

2

∑
σ

(c†σ,icσ,i+1 + c
†
σ,i+1cσ,i)

〉
. (12)

This indicates that dimers are spontaneously formed on
nearest-neighbor bonds, a phenomenon usually called spon-
taneous spin-Peierls dimerization. In analogy with the EHM
analysis, the corresponding charge field is pinned at the value
〈ϕ∗

c 〉 = 0, contrary to the SDW phase, where 〈ϕ∗
c 〉 �= 0. This

behavior is triggered by the prefactor of the mass gap, gc: ac-
cording to its sign, the cosine potential is either pinned around
0 or π/2, which implies different expectation values for ϕc.

As such, we conclude that, once the estimates of the
sine-Gordon model parameters from H12 are combined with a
nonperturbative treatment of the single species interactions, the
low-energy theory already predicts a finite region of parameter
space where bond order is stable. This is due to the effects of the
long-range dipolar tails, which consistently affect the Luttinger
parameter of the single species Hamiltonians, and lead to
different conditions for the BKT and Gaussian transitions.

However, the treatment is supposed to work only in the
weak-coupling regime since on-site interactions are taken into
account only perturbatively, and the provided estimate on
the Gaussian line does not capture indeed the entire dipolar
interaction. Moreover, treating the interchain interactions non-
perturbatively requires the SU(2) symmetry to be reinforced
at low energies as discussed above; the quantitative accuracy
of this procedure is hard to establish a priori. In order to
confirm the existence and the finite extent of a BOW phase at
finite, intermediate couplings, a nonperturbative approach is
required. In the next section, we provide a numerical analysis
of Eq. (2) using the present theory as a guideline to identify
the possible transitions in the microscopic model.

IV. NUMERICAL RESULTS

The accurate determination of the phase diagram of the
system is a very challenging task. As far as the simpler EHM
is concerned, despite the great effort put in its numerical study
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TABLE I. Thermodynamic properties of the different phases
discussed in the main text (a) and behavior of the various observables
at the transition lines (b).

(a)

CDW BOW SDW

�c >0 >0 >0
�s >0 >0 0
〈B〉 0 �=0 0

(b)

CDW-BOW BOW-SDW
�c = 0, �s〉0 �s = 0, �c〉0
Kc �= 0 Ks = 1

〈B〉 = 0 〈B〉 = 0

over the last decade, few results have shown good agreement
with each other [24–31]. Mindful of the difficulties in the
determination of the phase diagram for such a system, we
carefully calibrated on the EHM the methods employed below
to detect phase transitions with both periodic (PBC) and open
boundary conditions (OBC); discarded weights of the order
10−8 allow us to estimate the phase transitions within 1% with
the most recent and accurate results [28,31].

We calculate several physical quantities, summarized in
Table I, to determine as accurately as possible the two phase
boundaries of Eq. (2), keeping in the DMRG simulation terms
up to |j − i| = 5 in the off-site dipolar interaction part. We ver-
ified for small system sizes that the inclusion of longer-range
terms does not significantly affect the quantities of interest.

A. CDW-BOW transition

Starting in the CDW phase, as the dipolar interaction
strength is decreased the system enters in a BOW phase
through a Gaussian phase transition (away from the strong-
coupling limit). As a first probe of the transition, we calculate
the density gap

�c = lim
L→∞

[E(N + 2,0) + E(N − 2,0) − 2E(N,0)]/2, (13)

where E(N,Sz) is the ground state energy of N = L parti-
cles with total magnetization Sz = (N↑ − N↓)/2. Due to the
competition between long-range and on-site interactions the
finite-size gap has to take a minimum value at the transition
point (which is gapless in the thermodynamic limit [31]). To
locate the phase boundary as precisely as possible we also
calculate the BOW order parameter defined as

〈B〉 = lim
L→∞

|〈BL/2 − BL/2+1〉|, (14)

where Bi is the operator defined in Eq. (12). 〈B〉 is the
amplitude of the oscillation of the BOW operator at the center
of the chain, defined in such a way that Friedel oscillations
are weaker [31]: a nonvanishing value of 〈B〉 will be a clear
signature of the BOW phase.

A further signature of the phase transition is given by the
Luttinger liquid (LL) parameter Kc. For a periodic chain it can

be extracted from the (density) static structure factor

Sc(q) = 1

L

∑
k,l

eiq(k−l) (〈nknl〉 − 〈nk〉〈nl〉) (15)

with q = 2π/L. Within LL theory Kc = limq→0 πSc(q)/q
is finite only on the phase transition line for a continuous
transition (while it is always zero instead for first-order
transitions). Since we are dealing with a finite-size system
we expect to see a sharp peak at the transition line [28].

In order to get the correct values in the thermodynamic limit
for the quantities described above, a careful finite-size scaling
analysis must be carried out. The density gap �c is extrapolated
fitting the data with a fourth-order polynomial in 1/L,
reproducing the holon band structure near the band edges. For
the BOW order parameter 〈B〉 we assume that in the center of
the chain the amplitude of Friedel oscillations is proportional
to 1/LKc [31] to extrapolate its thermodynamic value.

As an additional benchmark to pinpoint the Gaussian
transition point, we study the behavior of the von Neumann
entropy, that can be successfully used to locate critical
points [47]. In particular, we monitor the following quantity:

�S(L) = SL(L/2) − SL/2(L/4), (16)

i.e., the increase of the entropy at the midsystem interface upon
doubling the system size; SL(l) denotes the von Neumann
entropy of a block of size l, L being the length of the
whole system. To avoid boundary terms that may give rise
to oscillating corrections to the entropy, we will impose PBC
on the system under study: due to the finite size of the system
we expect �S(L) to develop a peak at the critical point.

We run DMRG simulations for several values of the
on-site interaction U varying the strength of the dipolar
interaction V . To calculate the density gap and the BOW
order parameter we employ OBC varying the system sizes
between L = 32 and L = 128. We keep up to m = 1256 states
and perform six sweeps in the renormalization procedure: the
corresponding truncation errors are at most of order 10−8.
To calculate the static structure factor (15) and the increase
of the entropy (16), we instead use PBC on smaller systems
(L = 16,20,24,32,40,48), keeping up to m = 1400 states and
six sweeps.

As a case study we discuss in detail the results for U = 4t ,
the same analysis having been carried on for all the points
depicted in the phase diagram Fig. 1. In panel (a) of Fig. 2 and
in the inset of Fig. 3 one sees that Kc develops a peak (sharper
as the system size increases) when Vc/t � 2.37, that is also
the same Vc/t where the peak in �S is located as shown
in Fig. 3. In panel (b) of Fig. 2 the BOW order parameter
〈B〉 is plotted as a function of 1/LK∗

c , with K∗
c � 0.44 the

thermodynamic limit (TDL) value of Kc close to the transition
line: an accurate finite-size scaling shows that 〈B〉 vanishes
as V/t = 2.44 while it is still finite for V/t = 2.4. Finally, in
panel (c) of Fig. 2 we plot the density gap �c, and after a careful
extrapolation in the TDL we see that �c vanishes as V/t =
2.36(4). The results discussed above are all in quantitative
agreement, leading us to infer that the transition between the
CDW and the BOW phases occurs for Vc/t = 2.40(4).
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2 2.4V/t0.1

0.3

Kc
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L=24
L=32
L=40
L=48

0 0.05 0.1 0.15 1/LKc

0.1

0.2
B

V/t=2.36   B=0.108(2)
V/t=2.40   B=0.049(2)
V/t=2.44   B=0.001(2)

0 0.01 0.021/L

0.4

0.8

Δc

V/t=2.32 Δc=0.069(3)
V/t=2.36 Δc=0.0069(6)
V/t=2.40 Δc=0.0087(2)
V/t=2.44 Δc=0.074(1)
V/t=2.48 Δc=0.171(2)

(b)(a)

(c)

FIG. 2. (Color online) (a) Luttinger parameter Kc, for U = 4t

as a function of V/t for different system sizes L. (b) BOW order
parameter 〈B〉 for various V/t ; in the box is its value in the TDL.
(c) Density gap �c for various values of V/t ; in the box its values in
the TDL. Straight lines are guides for the eye, whereas dashed lines
fit the numerical data using the appropriate scaling laws.

B. SDW-BOW transition

As the strength of the dipolar interaction is further de-
creased, Peierls dimerization is destroyed and the system
enters in a SDW with a uniform distribution of the density and
no gap in the spin sector. The BKT nature of this transition
makes its location challenging when evaluating the spin gap

�s = lim
L→∞

[E(N,1) − E(N,0)] (17)

since it is exponentially small close to the transition line [40]. A
valid alternative is provided by the spin-static structure factor

Ss(q) = 1

L

∑
k,l

eiq(k−l)
(〈
sz
ks

z
l

〉 − 〈
sz
k

〉〈
sz
l

〉)
. (18)

2 2.2 2.4 2.6
V/t

0

0.3

0.6

ΔS

2.36 2.38 V/t
0.43

0.45

Kc

L=32
L=40
L=48

FIG. 3. (Color online) The difference �S(L) = SL(L/2) −
SL/2(L/4) for several system sizes for U = 4t varying V/t . The inset
shows the Luttinger parameter Kc in the region 2.35 � V/t � 2.4.
Straight lines are guides for the eye.

20.00 1/L

0.1

0.2
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V/t=2.08 Δs=0.0001(7)
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V/t=2.20 Δs=0.0015(5)

0 0.0005 0
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0 0.05 0.1 0.15 1/LKc
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B

V/t=2.04   B=0.0008(9)
V/t=2.08   B=0.0052(6)
V/t=2.12   B=0.0063(5)

1.9 2.1 2.3V/t

0.9

1

1.1

Ks

L=16
L=24
L=32
L=40
L=48
TDL

(b)(a)

(c)

FIG. 4. (Color online) (a) Luttinger parameter Ks , for U = 4t

as a function of V/t for different system sizes L. (b) BOW order
parameter 〈B〉 for various V/t ; in the box is its value in the TDL.
(c) Spin gap �s for various values of V/t ; in the box its values in the
TDL; the inset shows the region around the origin. Straight lines are
guides for the eye, whereas dashed lines fit the numerical data using
the appropriate scaling laws.

Indeed LL theory predicts that Ks = limq→0 πSs(q)/q is zero
in the spin gapped phase and Ks = 1 in the gapless one.
Logarithmic corrections prevent Ks to reach the latter value
even for long chains. Nonetheless, such corrections have been
shown to vanish in the frustrated J -J ′ model when the system
forms dimers [48]. The same is true for the EHM [28] since
the BOW-SDW transition should have the same nature, and it
is expected to hold also in our case. In the BOW phase Ks = 0
near the transition only for very large systems. Following [28],
we estimate the transition point when, at fixed U , Ks crosses
1 from above as V is increased. The thermodynamic limit of
the spin gap �s is obtained, as for the density gap, fitting the
data with a fourth-order polynomial in 1/L, reproducing the
spinon band structure near the band edges.

The results of the DMRG simulations are reported in Fig. 4.
First of all one can see in panel (a) of Fig. 4 that Ks crosses 1
for V/t � 2.1 and an accurate finite-size scaling allows us
to locate the transition point for V/t = 2.089. This result
is confirmed looking at the BOW order parameter 〈B〉 in
panel (b) of Fig. 4: In the thermodynamic limit 〈B〉 is still
finite at V/t = 2.08 while it vanishes for smaller values of
the strength of the dipolar interaction. We therefore conclude
that the transition between the SDW and the BOW phases is
located at Vc/t = 2.08(4). For the sake of completeness, even
if it is not conclusive about a precise determination of the
critical point, we plot in panel (c) of Fig. 4 the spin gaps: the
extrapolated values close to the critical point are too small to
be resolved, as expected from the BKT nature of the transition.
As such, a reliable estimate of the transition point can hardly
be drawn from this quantity alone.

A second set of results is illustrated at the smallest coupling
we have analyzed, U = 1.5t , in Fig. 5. There, the transition
point estimates extrapolated from the Luttinger parameter still
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FIG. 5. (Color online) (a) Luttinger parameter Kc for U = 1.5t

as a function of V/t : The maximum location indicates the Gaussian
transition point, Vc/t = 0.88 ± 0.04. (b) Luttinger parameter Ks for
U = 1.5t as a function of V/t indicating a BKT transition (see text).
(c) Bond-order parameter finite-size scaling at U = 1.5t and different
values of the dipolar interaction strength.

point towards a finite extent of the BOW region for 0.77(3) <

V/t < 0.88(4). However, the magnitude of the bond-order
parameter is notably reduced with respect to the U = 4t case.

V. EXPERIMENTAL REGIMES AND PROBES

Polar molecules and magnetic atoms offer strong versatility
in tuning interactions. In the latter case, the ratio V/U can
be independently tuned by means of Feshbach resonances,
which have been already reported for bosonic 52Cr [15] and
167Er [13] isotopes. In the case of molecular gases stable
under two-body recombination, accurate estimates of on-site
interactions will be required. An alternative approach can
employ Feshbach molecules of strongly magnetic atoms such
as Er or Dy, effectively increasing by a factor ∼8 the strength
of the dipole-dipole interactions [45].

The existence of the BOW phase can be indirectly probed
spectroscopically as follows: first, the density gap is estimated
by means of lattice modulation spectroscopy, indicating the
onset of the Gaussian transition. Subsequently, the spin gap is
estimated by means of RF spectroscopy. The BOW phase can
be located in the intermediate region between the two transition
points, as illustrated in Fig. 6. A more solid, direct probe of the
exotic nature of the insulating state is the long-range nature of
the parity order parameters:

Os(x) =
〈

+x∏
j=

eiπSz
j

〉
, Oc(x) =

〈
+x∏
j=

eiπnj

〉
, (19)

which are well-defined order parameters for general Hubbard
models [36]. As discussed in Refs. [36,37] such correlation
functions properly distinguish the CDW, SDW, and BOW
phases. In particular, only the latter phase has long-range
order in both Os and Oc. Although measuring parity order

2.1 2.2 2.3 2.4 V/t
0

0.2

Δc,s

Δc
Δs x 25

FIG. 6. (Color online) Density and spin (×25) gaps in the ther-
modynamic limit for various V/t .

parameters is a difficult task, recently Oc has been measured
for cold atoms with short-range interaction loaded in an optical
lattice by in situ imaging of the many-body wave function via
atom fluorescence [35].

As far as thermal effects are concerned, the major ex-
perimental challenge would be to reach regimes where the
temperature is smaller than the finite-size spin gap, which
is at most of order 0.15t for relatively small systems deep
in the BOW phase. This implies that temperatures of order
of 10 nK would be required in order to neglect thermal
effects. While this is indeed a challenging task, we notice
that recent experiments using both Cr atoms [49] and RbK
polar molecules [50] have demonstrated coherent dipolar spin
dynamics in the 50 Hz range, in the similar regime of the
aforementioned temperatures.

VI. CONCLUSIONS

In summary, we have provided a detailed study of how
dipolar fermionic mixtures support exotic insulating states
with dominant bond order. We have underpinned the corre-
sponding Hubbard phase diagram by combining numerical
and analytical techniques. Remarkably, differently from the
standard EHM, we find that the BOW phase can be found
already at the level of one-loop g-ology. This is due to the
long-range nature of the interaction which enhances frustration
effects in the system, shifting as well the BOW region to
larger values of the off-site interaction V . While an accurate
determination of the spin gap is very challenging, precise
estimates of the phase boundaries of the BOW region can be
given via finite-size scaling of the Luttinger parameters, which,
as in the case of the EHM [28,31], represent a very efficient and
precise method to underpin BKT transitions. Experimentally,
the nontrivial correlations embodied in the bond-density-wave
phase can be faithfully captured by string order parameters by
means of in situ imaging. This makes cold atoms in optical
lattices an ideal setup for the investigation and demonstration
of bond-order instabilities in strongly correlated systems.
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P. Pedri, L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-
Tolra, Phys. Rev. Lett. 111, 185305 (2013).

[50] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

063608-7

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1103/PhysRevLett.93.243005
http://dx.doi.org/10.1103/PhysRevLett.93.243005
http://dx.doi.org/10.1103/PhysRevLett.93.243005
http://dx.doi.org/10.1103/PhysRevLett.93.243005
http://dx.doi.org/10.1103/PhysRevLett.94.203001
http://dx.doi.org/10.1103/PhysRevLett.94.203001
http://dx.doi.org/10.1103/PhysRevLett.94.203001
http://dx.doi.org/10.1103/PhysRevLett.94.203001
http://dx.doi.org/10.1103/PhysRevLett.95.173002
http://dx.doi.org/10.1103/PhysRevLett.95.173002
http://dx.doi.org/10.1103/PhysRevLett.95.173002
http://dx.doi.org/10.1103/PhysRevLett.95.173002
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1088/0953-4075/39/19/S13
http://dx.doi.org/10.1088/0953-4075/39/19/S13
http://dx.doi.org/10.1088/0953-4075/39/19/S13
http://dx.doi.org/10.1088/0953-4075/39/19/S13
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1038/nphys1031
http://dx.doi.org/10.1038/nphys1031
http://dx.doi.org/10.1038/nphys1031
http://dx.doi.org/10.1038/nphys1031
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1038/nature06036
http://dx.doi.org/10.1038/nature06036
http://dx.doi.org/10.1038/nature06036
http://dx.doi.org/10.1038/nature06036
http://dx.doi.org/10.1103/PhysRevLett.106.015301
http://dx.doi.org/10.1103/PhysRevLett.106.015301
http://dx.doi.org/10.1103/PhysRevLett.106.015301
http://dx.doi.org/10.1103/PhysRevLett.106.015301
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevB.83.155110
http://dx.doi.org/10.1103/PhysRevB.83.155110
http://dx.doi.org/10.1103/PhysRevB.83.155110
http://dx.doi.org/10.1103/PhysRevB.83.155110
http://dx.doi.org/10.1103/PhysRevB.87.195101
http://dx.doi.org/10.1103/PhysRevB.87.195101
http://dx.doi.org/10.1103/PhysRevB.87.195101
http://dx.doi.org/10.1103/PhysRevB.87.195101
http://dx.doi.org/10.1088/1367-2630/14/6/065012
http://dx.doi.org/10.1088/1367-2630/14/6/065012
http://dx.doi.org/10.1088/1367-2630/14/6/065012
http://dx.doi.org/10.1088/1367-2630/14/6/065012
http://dx.doi.org/10.1103/PhysRevB.3.2662
http://dx.doi.org/10.1103/PhysRevB.3.2662
http://dx.doi.org/10.1103/PhysRevB.3.2662
http://dx.doi.org/10.1103/PhysRevB.3.2662
http://dx.doi.org/10.1103/PhysRevLett.53.2327
http://dx.doi.org/10.1103/PhysRevLett.53.2327
http://dx.doi.org/10.1103/PhysRevLett.53.2327
http://dx.doi.org/10.1103/PhysRevLett.53.2327
http://dx.doi.org/10.1103/PhysRevB.41.9435
http://dx.doi.org/10.1103/PhysRevB.41.9435
http://dx.doi.org/10.1103/PhysRevB.41.9435
http://dx.doi.org/10.1103/PhysRevB.41.9435
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevLett.89.236401
http://dx.doi.org/10.1103/PhysRevLett.89.236401
http://dx.doi.org/10.1103/PhysRevLett.89.236401
http://dx.doi.org/10.1103/PhysRevLett.89.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevB.69.035103
http://dx.doi.org/10.1103/PhysRevB.69.035103
http://dx.doi.org/10.1103/PhysRevB.69.035103
http://dx.doi.org/10.1103/PhysRevB.69.035103
http://dx.doi.org/10.1103/PhysRevLett.96.036408
http://dx.doi.org/10.1103/PhysRevLett.96.036408
http://dx.doi.org/10.1103/PhysRevLett.96.036408
http://dx.doi.org/10.1103/PhysRevLett.96.036408
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1103/PhysRevLett.109.236404
http://dx.doi.org/10.1103/PhysRevLett.109.236404
http://dx.doi.org/10.1103/PhysRevLett.109.236404
http://dx.doi.org/10.1103/PhysRevLett.109.236404
http://dx.doi.org/10.1103/PhysRevB.88.035109
http://dx.doi.org/10.1103/PhysRevB.88.035109
http://dx.doi.org/10.1103/PhysRevB.88.035109
http://dx.doi.org/10.1103/PhysRevB.88.035109
http://dx.doi.org/10.1103/PhysRevA.84.033619
http://dx.doi.org/10.1103/PhysRevA.84.033619
http://dx.doi.org/10.1103/PhysRevA.84.033619
http://dx.doi.org/10.1103/PhysRevA.84.033619
http://dx.doi.org/10.1103/PhysRevLett.108.145301
http://dx.doi.org/10.1103/PhysRevLett.108.145301
http://dx.doi.org/10.1103/PhysRevLett.108.145301
http://dx.doi.org/10.1103/PhysRevLett.108.145301
http://dx.doi.org/10.1103/PhysRevA.75.051602
http://dx.doi.org/10.1103/PhysRevA.75.051602
http://dx.doi.org/10.1103/PhysRevA.75.051602
http://dx.doi.org/10.1103/PhysRevA.75.051602
http://dx.doi.org/10.1088/1367-2630/10/4/045011
http://dx.doi.org/10.1088/1367-2630/10/4/045011
http://dx.doi.org/10.1088/1367-2630/10/4/045011
http://dx.doi.org/10.1088/1367-2630/10/4/045011
http://dx.doi.org/10.1088/1367-2630/12/3/033032
http://dx.doi.org/10.1088/1367-2630/12/3/033032
http://dx.doi.org/10.1088/1367-2630/12/3/033032
http://dx.doi.org/10.1088/1367-2630/12/3/033032
http://dx.doi.org/10.1103/PhysRevLett.105.140401
http://dx.doi.org/10.1103/PhysRevLett.105.140401
http://dx.doi.org/10.1103/PhysRevLett.105.140401
http://dx.doi.org/10.1103/PhysRevLett.105.140401
http://dx.doi.org/10.1103/PhysRevB.84.085110
http://dx.doi.org/10.1103/PhysRevB.84.085110
http://dx.doi.org/10.1103/PhysRevB.84.085110
http://dx.doi.org/10.1103/PhysRevB.84.085110
http://dx.doi.org/10.1103/PhysRevLett.111.113001
http://dx.doi.org/10.1103/PhysRevLett.111.113001
http://dx.doi.org/10.1103/PhysRevLett.111.113001
http://dx.doi.org/10.1103/PhysRevLett.111.113001
http://dx.doi.org/10.1088/1742-5468/2008/05/P05018
http://dx.doi.org/10.1088/1742-5468/2008/05/P05018
http://dx.doi.org/10.1088/1742-5468/2008/05/P05018
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevB.54.R9612
http://dx.doi.org/10.1103/PhysRevLett.111.185305
http://dx.doi.org/10.1103/PhysRevLett.111.185305
http://dx.doi.org/10.1103/PhysRevLett.111.185305
http://dx.doi.org/10.1103/PhysRevLett.111.185305
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483

