109 research outputs found
Self-alignment of silicon chips on wafers: a capillary approach
As the limits of Moores law are approached, three-dimensional integration appears as the key to advanced microelectronic systems. Die-to-wafer assembly appears to be an unavoidable step to reach full integration. While robotic methods experience difficulties to accommodate fabrication speed and alignment accuracy, self-assembly methods are promising due to their parallel aspect, which overcomes the main difficulties of current techniques. The aim of this work is the understanding of the mechanisms of self-alignment with an evaporating droplet technique. Stable and unstable modes are examined. Causes for misalignments of chips on wafers and their evolution are investigated with the help of the SURFACE EVOLVER numerical software. Precautions for suitable alignment are proposed
Silicon Die Self-alignment on a Wafer: Stable and Unstable Modes
3D integration is the key to advanced microelectronic systems. Die-to-wafer assembly is a necessary step to reach full integration. Self-assembly methods are promising due to their parallel aspect which overcomes the main difficulties of the current techniques. The aim of this work is the understanding of the mechanisms of self-alignment with an evaporating droplet technique and the investigation the stable and unstable modes. Using the Surface Evolver software, we analyze the causes for misalignments of the system and their evolution
Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si
Abstract—We have performed a numerical and experimental analysis of the thermal behavior of electrically injected microdisk lasers that are defined in an InGaAsP-based thin film bonded on top of a silicon wafer. Both the turn-on as well as the pulsed-regime temperature evolution in the lasing region was simulated using the finite-element method. The simulation results are in good agreement with experimental data, which was extracted from the broadening of the time-averaged emission spectra. Lasing at room temperature was only possible in pulsed regime due to the high thermal resistance (10 K/mW). Some strategies to decrease the thermal resistance of the microdisk lasers are proposed and discussed. Index Terms—Heterogeneous integration, InGaAsP, integrated optics, microdisk laser, Si, thermal characterization
Indium phosphide based membrane photodetector for optical interconnects on silicon
We have designed, fabricated and characterized an InP-based membrane photodetector on an SOI wafer containing a Si-wiring photonic circuit. New results on RF characterization up to 20 GHz are presented. The detector fabrication is compatible with wafer scale processing steps, guaranteeing compatibility towards future generation electronic IC processing
Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit
Abstract: We have achieved electrically-injected continuous-wave lasing in InP-based microdisk structures coupled to a sub-micron silicon-on-insulator wire waveguide, fabricated through bonding technology. The threshold current was 0.6 mA with up to 7 µW continuous-wave output power. ©2007 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits 1
InP/InGaAs photodetector on SOI photonic circuitry
We present an InP-based membrane p-i-n photodetector on a silicon-on-insulator sample containing a Si-wiring photonic circuit that is suitable for use in optical interconnections on Si integrated circuits (ICs). The detector mesa footprint is 50 µm2, which is the smallest reported to date for this kind of device, and the junction capacitance is below 10 fF, which allows for high integration density and low dynamic power consumption. The measured detector responsivity and 3-dB bandwidth are 0.45 A/W and 33 GHz, respectively. The device fabrication is compatible with wafer-scale processing steps, guaranteeing compatibility toward future-generation electronic IC processing
- …