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Abstract—We have performed a numerical and experimental
analysis of the thermal behavior of electrically injected microdisk
lasers that are defined in an InGaAsP-based thin film bonded on
top of a silicon wafer. Both the turn-on as well as the pulsed-regime
temperature evolution in the lasing region was simulated using
the finite-element method. The simulation results are in good
agreement with experimental data, which was extracted from
the broadening of the time-averaged emission spectra. Lasing at
room temperature was only possible in pulsed regime due to the
high thermal resistance (10 K/mW). Some strategies to decrease
the thermal resistance of the microdisk lasers are proposed and
discussed.

Index Terms—Heterogeneous integration, InGaAsP, integrated
optics, microdisk laser, Si, thermal characterization.

I. INTRODUCTION

M ICRODISK lasers have attracted much interest lately,
mostly due to their potential role as very compact light

sources with low power consumption in large-scale photonic
integrated circuits. Several authors have reported electrically
injected lasing in microdisk structures that are supported by
a pedestal, with some having lasing thresholds of well below
100 µA [1]–[4]. The collection of the laser light can be done
by means of evanescent coupling to a passive waveguide, as
demonstrated in [5]. Our work focuses on the integration of
these III–V microdisk lasers on an Si platform. This approach
facilitates integration not only with silicon electronics but also
with silicon photonics. Indeed, because of the transparency of
Si at the telecommunications wavelengths 1.3 and 1.55 µm,
and the fact that complementary metal–oxide–semiconductor
technology can be used in the fabrication of photonic compo-
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Fig. 1. (Left) Schematic representation of the microdisk laser structure and
(Right) scanning-electron-microscope photo of the edge of the microdisk laser
in cross section.

nents in silicon-on-insulator (SOI) [6], silicon has emerged as
a promising platform for photonic functions. A big obstacle,
however, is the poor light generation efficiency of silicon. This
has been addressed by using the Raman effect [7], [8]. However,
the optical gain in Si remains relatively low compared with
III–V materials, resulting in very long laser structures. In our
approach, the integration of compact active optoelectronic com-
ponents on a silicon platform is done by bonding a thin III–V
film on top of it. Optically pumped lasing in microdisk lasers
that are integrated on an Si wafer has already been demon-
strated [9], as well as their optical coupling to an underlying
SOI waveguide [10]. Another demonstration of a heterogeneous
approach can be found in [11]. Recently, we have demonstrated
the electrically injected lasing operation of a microdisk laser
that is integrated on an Si wafer [12]. Only pulsed operation was
possible at room temperature due to serious self-heating. For
most practical applications, efficient continuous-wave (CW)
operation at room temperature (and above) will be needed,
together with a minimal thermal rollover. Therefore, this self-
heating should be strongly reduced. A first step toward this goal
is a thermal analysis of these integrated thin-film microdisk
lasers, which is presented in this paper.

II. MICRODISK LASER STRUCTURE AND

LASING CHARACTERISTICS

A schematic representation of the microdisk laser structure
is given in Fig. 1. Microdisks with diameter D in the range
of 4–9 µm were etched into an InGaAsP-based thin film
that is molecularly bonded on top of a Si wafer, with an
intermediate 1-µm-thick SiO2 bonding layer, that is deposited
with plasma-enhanced chemical vapor deposition (PECVD).
The active layer contains three InAsP quantum wells that are
embedded in undoped Q1.2-barrier layers and is surrounded by
an n+ InP contact layer on top and a p+ InP layer below. In
order to avoid high optical absorption in p-type contact layers,
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Fig. 2. Typical pulsed PI curve for D = 6 µm, with T = 20 ◦C
(100-ns pulses, 3-µs period). Left inset: Threshold current as a function of disk
diameter. Right inset: Lasing spectrum for D = 6 µm and I = 0.75 mA.

a reverse-biased Q1.2 tunnel junction was implemented, in
combination with another n+ contact layer. The total III–V film
thickness is 480 nm. The microdisk etch is incomplete, leaving
an 80-nm-thick lateral contact layer at the bottom of the disk.
Before depositing the metal contacts, the structure is covered
with a benzocyclobutene (BCB) film, in which contact windows
are etched. Since the fundamental laser modes of a microdisk
are whispering gallerymodes that are located at the edges of the
disk, the top contact window is only etched open at the center
of the disk to avoid excess optical absorption due to the top
metal. The bottom metal contact is placed a few micrometers
from the disk. A cross section of a fully processed microdisk
laser is also depicted in Fig. 1. A more detailed overview of
the laser structure and fabrication aspects can be found in [12].
For the electroluminescence measurements, a variable voltage
was applied over the electrodes, and a fraction of the emitted
light was collected by a multimode fiber and fed into a spectrum
analyzer, with a minimum spectral resolution of 0.2 nm. Fig. 2
shows the peak power versus current (PI) characteristic at
room temperature in the pulsed regime for a disk with D =
6 µm. The PI curve reveals a clear threshold current Ith of
0.55 mA (1.95 kA/cm2). The inset at the right shows the
emission spectrum for I = 0.75 mA, with a clear laser peak at
1570 nm. The left inset shows the threshold currents for disks
with D ranging from 6 to 9 µm. For D < 6 µm, the BCB top
contact window could not be etched open. The threshold volt-
age varies between 5 and 7 V. This high value and its variation
are due to a nonoptimal tunnel junction and nonoptimal metal
contacts. Indeed, for some devices, the threshold voltage was
reduced after sending a large current through the structure, most
probably due to self-annealing of the metal contacts. In a second
set of measurements, the temperature of the Si substrate was
elevated from 10 ◦C up to 70 ◦C while recording the pulsed
PI curve and the emission spectrum at each temperature. The
results for D = 6 µm can be found in Fig. 3. Lasing was
observed up to 70 ◦C, with Ith = 1.05 mA and a strongly
reduced laser efficiency. The temperature dependence of the
lasing threshold can roughly be fitted as Ith = I0 exp(T/T0),
with I0 = 0.39 mA and T0 = 71 K. The emission wavelength
λr shifts with temperature at a rate of dλr/dT = 86 pm/K. This
value is lower than the expected 100 pm/K for InP-based lasers

Fig. 3. Temperature dependence of the PI curve for D = 6 µm (100-ns
pulses, 3-µs period). Inset: Temperature dependence of the lasing wavelength.

Fig. 4. Geometry used for thermal simulations, together with a typical tem-
perature distribution. Temperatures are recorded in (black dot) the lasing region.

but is very close to the 90 pm/K that is reported in [3] for
BCB-covered microdisk lasers. The reduction in wavelength
shift is attributed to the negative temperature dependence of
the refractive index of BCB. For larger disk diameters, we
measured wavelength shifts of up to 95 pm/K.

III. THERMAL SIMULATION

In order to model the thermal behavior of the microdisk
lasers, the heat equation should be solved as

ρc
∂T

∂t
= qv + ∇ · (κ∇T ) (1)

where ρ is the density, c is the specific heat, T (r, t) is the
temperature, t is the time, qv is the heat dissipation per unit
volume, and κ is the thermal conductivity. Since the complete
microdisk lasing structure has cylindrical symmetry (except for
the metal pads), we chose to solve this problem in cylindrical
coordinates, i.e.,

rρc
∂T

∂t
= qvr +

∂

∂r
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with r and z being the cylindrical coordinates. Coordinate θ
does not appear in the equation due to symmetry. The laser
structure that was used in the thermal model is depicted in
Fig. 4. The geometry parameters were taken from the cross
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TABLE I
MATERIAL PARAMETERS USED IN THE THERMAL SIMULATION

section in Fig. 1. A commercial finite-element tool was used
to solve (2). Neumann boundary conditions were set on all
the boundaries of the structure, except for the bottom bound-
ary, which is kept at a fixed temperature (Dirichlet bound-
ary condition), and thus acts as a heat sink. Convection and
radiation effects can be neglected and were not taken into
account. The simulated temperatures that are presented in the
remainder of this paper are extracted at r = 0.45D at half
thickness of the III–V membrane since the thermal dependence
of the lasing characteristics is determined by the tempera-
ture at the location of the laser mode (the dot in Fig. 4).
The heat is assumed to be dissipated homogeneously over
the entire microdisk volume, and therefore, a total dissipated
power P results in qv = P/(πR2d), with R being the radius
and d being the thickness of the disk. The material parame-
ters that were used in the simulation are listed in Table I.
SiO2 films can have a thermal conductivity κ in the range of
0.8–1.4 W/mK, depending on the deposition technique [13].
Thermally grown SiO2 films have κ = 1.27 W/mK, whereas
films that are deposited by chemical vapor deposition have
κ ∼ 1 W/mK. For the simulations, κSiO2 = 1.27 W/mK was
assumed, unless specified otherwise. The thermal conductivity
of Au was set to half its bulk value since the evaporated Au
layer thicknesses were about 150 nm, and it is known that
the thermal conductivity of Au decreases with decreasing film
thickness [14]. For InP, the thermal conductivity was set to
40 W/mK, due to its high doping level.

The turn-on temperature evolution in a microdisk with
D = 6 µm was simulated for a dissipated power of 6, 9, and
15 mW. A dissipated power of 6 mW is equivalent to a voltage
of 7 V and a current of 0.85 mA (3 kA/cm2), assuming that
all power is dissipated as heat. The heat sink temperature was
15 ◦C. The results are shown in [Fig. 5 (black solid lines)].
From these results, thermal resistance Rth = 11.5 K/mW could
be extracted. The heating transient behavior can be roughly
fitted by an exponential heating curve, assuming a thermal
time constant of 1.67 µs. The thermal resistance was calculated
for disk diameters in the range of 2–10 µm and is inversely
proportional to the disk diameter: Rth ∼ D−1.15 (see Fig. 6).
The thermal resistance decreases slower with disk diameter as
compared to the increase in disk area. Thus, we can expect a
better thermal behavior for smaller devices, assuming that the
threshold power density for lasing does not depend on disk
diameter. This is due to the fact that the heat flow at the edges

Fig. 5. Simulated turn-on temperature response for D = 6 µm and dissipated
powers of 6, 9, and 15 mW with a heat sink temperature of 15 ◦C, together with
the experimental results for (squares) 6 mW, (circles) 9 mW, and (triangles)
15 mW. The gray solid lines show the simulated response for κox = 1 W/mK
and provide a better fit.

Fig. 6. (Solid lines) Thermal resistance versus disk diameter. The results for
the structure in Fig. 4 are in black, the results for BCB that is replaced by
amorphous Al2O3 are in dark gray, and the results for SiO2 that is replaced by
crystalline Al2O3 are in light gray. Dashed lines represent temperature increase
for 21-kW/cm2 dissipation.

of the disk becomes more dominant for smaller disk diameters.
The thin lateral bottom contact layer indeed plays an important
role in the heat evacuation for these smaller microdisks. To
illustrate this, the expected temperature increase ∆T = RthP
due to self-heating is plotted as a function of disk diameter,
assuming a constant power dissipation of 3 kA/cm2 × 7V =
21 kW/cm2 (see Fig. 6). For D = 2 µm, ∆T is reduced to
23 K. With the heat sink at 15 ◦C, the device temperature should
remain below 40 ◦C, allowing CW lasing.

The thermal resistance can be decreased by improving the
heat flow through the bonding layer. Reducing the bonding-
layer thickness improves heat evacuation, but bonding layers
that are too thin will cause optical substrate leakage. Another
option is to use a bonding material with better thermal con-
ductivity and low refractive index, such as crystalline Al2O3 or
microcrystalline MgO (see Table I, [15], and [16]). By replac-
ing SiO2 with Al2O3, the thermal resistance can be reduced by
almost one order of magnitude [Fig. 6 (light gray lines)]. The
temperature increase remains for all disk diameters under 10 K.
However, bonding with (crystalline) Al2O3 layers is technolog-
ically far more challenging than that with SiO2. An alternative
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Fig. 7. Time-averaged lasing spectrum for a microdisk laser with D = 6 µm
versus pulse duration, with a fixed period of 5 µs. The spectral broadening due
to self-heating is extracted at −15, −10, and −5 dB of the peak power.

strategy is to spread the heat over a bigger area so that the heat
flows through a bigger part of the bonding layer. This effect is
already present due to the thin lateral InP contact layer but can
be greatly enhanced if the BCB planarization layer is replaced
with a better thermal conductor. It is highly unlikely that crys-
talline Al2O3 can be used as a planarization layer since it needs
to be deposited; therefore, we assumed to have amorphous
Al2O3 in this case (κ = 2 W/Km). The thermal resistance for
structures where the BCB is replaced by amorphous Al2O3

and with a SiO2 bonding layer is also shown in [Fig. 6 (dark
gray lines)]. The thermal resistance is reduced by 10%–40%,
depending on the disk diameter. However, bigger reduction
might be needed to achieve CW lasing in structures with high
electrical resistance, particularly, for large microdisk diame-
ters. Finally, another solution can be used to create a thermal
short circuit between the disk volume and the Si substrate by
etching a hole through the bonding layer and depositing good
thermal (metal) connection between the Si substrate and the
microdisk.

IV. EXPERIMENTAL THERMAL CHARACTERIZATION

In order to test our simulation results, we extracted the
heating and cooling behavior of the microdisk lasers by inspect-
ing the laser emission spectrum as a function of pulse drive
parameters. As the microdisk temperature increases due to self-
heating, the emission wavelength shifts to longer wavelengths
at a rate dλr/dT . This effect is visible on the recorded spectra
as a broadening of the laser peak since the spectrum analyzer
integrates the collected optical power over a time period that is
much longer than the thermal time constant.

In the first set of measurements, the pulse period was set
to a fixed value (5 µs), which is long enough to allow the
device to cool down between current pulses. Then, the emission
spectrum was measured as function of pulse duration s. The
spectra for a device with D = 6 µm are shown in Fig. 7. The left
edge of the laser peak can be found at approximately the same
wavelength for all pulse durations. The right edges, however,
show an increasing red shift with increasing pulse duration. For
each spectrum, the spectral broadening ∆λ(s) was measured at
−15, −10, and −5 dB from the peak power. For each of these

Fig. 8. Minimum and maximum pulsed-regime temperatures versus period
with a fixed pulse duration (360 ns) and 11-mW dissipated power. The solid
lines are the simulation results (κox = 1.27 W/mK in black and κox =
1 W/mK in gray), and the circles and triangles are the measurements. The heat
sink temperature is 20 ◦C.

measurement sets, maximum temperature T (s) at the disk edge
was then estimated using

T (s) = Ths +
∆λ(s) − ∆λ0

dλr/dT
(3)

where Ths is the heat sink temperature, dλr/dT = 86 pm/K,
and ∆λ0 is the spectral broadening due to the limited resolution
of our measurement setup, which depends on the power level at
which the linewidth is extracted. For a resolution of 0.2 nm,
we get ∆λ0 = 1.11 nm at −15 dB, assuming a Lorentzian
line shape. These experimental results are compared with the
simulated thermal turn-on response in Fig. 5 for D = 6 µm and
dissipated powers of 6, 9, and 15 mW. The horizontal error
bars show the uncertainty on the pulsewidths due to electri-
cal loading effects, whereas the vertical error bars show the
variation on the measurement that results from extracting the
spectral broadening at different power levels. The experimental
results show a slightly higher device temperature than the sim-
ulations with κSiO2 = 1.27 W/mK predict. Decreasing κSiO2 to
1 W/mK gives a better fit.

In the second set of measurements, the pulse duration was
fixed at 360 ns, and the period was varied. For shorter periods,
the device does not get the time to cool down to the heat sink
temperature, and heat gradually accumulates at each period. In
the regime, the temperature will oscillate between minimum
temperature Tmin and maximum temperature Tmax, which are
both dependent on the period. Thus, this measurement also
incorporates the cooling behavior of the device. The results
for a device with D = 7 µm, P = 11 mW, and Ths = 20 ◦C
are shown in Fig. 8. For T > 65 ◦C, the lasing signal was
too weak to do proper spectral inspection. For T < 30 ◦C,
there was mode competition with a higher order mode (at
shorter wavelength), which prevented a straightforward extrac-
tion of the minimum regime temperature. In this case, exper-
imental results agree slightly better with κSiO2 = 1.27 W/mK
than with κSiO2 = 1 W/mK. Based on these two experiments,
we conclude that the SiO2 film has a thermal conductance
in the range of 1–1.27 W/mK, which is consistent with its
PECVD-nature.
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V. CONCLUSION

We have performed a numerical and experimental analysis
of the thermal behavior of electrically injected microdisk lasers
that are defined in an InGaAsP-based thin film bonded on top of
a silicon wafer, incorporating a BCB isolation and planarization
layer. Lasing at room temperature was only possible in pulsed
regime due to self-heating effects. Simulation results indicated
that the thermal resistance is on the order of 104 K/W. The
thermal behavior can be improved by using a material with a
higher thermal conductivity, such as Al2O3, for the bonding
layer and/or the isolation layer. The thermal turn-on response
and pulsed-regime temperatures were experimentally extracted
by inspecting thermal spectral broadening, and the results were
found to be in good agreement with simulation results.
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