2,987 research outputs found
Changes in dopamine transmission in the nucleus accumbens shell and core during ethanol and sucrose self-administration
Ethanol, like other substances of abuse, preferentially increases dopamine (DA) transmission in the rat nucleus accumbens (NAc) following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA). The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1) schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active), reward omission (extinction trial) and response non-contingent (passive) presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc subdivisions under sucrose and ethanol SA likewise suggests that the NAc shell and core DA play different roles in sucrose as compared to ethanol reinforcement
Cannabis; epidemiological, neurobiological and psychopathological issues: an update
This document is the Accepted Manuscript version of the following article: Maria Antonietta De Luca, Gaetano Di Chiara, Cristina Cadoni, Daniele Lecca, Laura Orsolini, Duccio Papanti, John Corkery, Fabrizio Schifano, 'Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update', CNS & Neurological Disorders - Drug Targets, Vol. 16, 2017. The published manuscript is available at EurekaSelect via https://doi.org/10.2174/1871527316666170413113246. Published by Bentham Science.Cannabis is the illicit drug with both the largest current levels of consumption and the highest reported lifetime prevalence levels in the world. Across different countries, the prevalence of cannabis use varies according to the individual income, with the highest use being reported in North America, Australia and Europe. Despite its ‘soft drug’ reputation, cannabis misuse may be associated with several acute and chronic adverse effects. The present article aims at reviewing several papers on epidemiological, neurobiological and psychopathological aspects of the use of cannabis. The PubMed database was here examined in order to collect and discuss a range of identified papers. Cannabis intake usually starts during late adolescence/early adulthood (15-24 years) and drastically decreases in adulthood with the acquisition of working, familiar and social responsibilities. Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders. The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates. Furthermore, it has been well demonstrated that cannabis intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a ‘gateway drug’. Some considerations on synthetic cannabimimetics are provided here as well. In conclusion, the highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence. Indeed, there are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health.Peer reviewe
The Role of Target Therapy in the Treatment of Gastrointestinal Noncolorectal Cancers: Clinical Impact and Cost Consideration
Gastrointestinal (GI) tumors are among the leading cause of death in cancer patients worldwide. Particularly, gastric cancer (GC) is the third cause of cancer deaths, whereas esophageal neoplasm is the eighth leading most common cancer worldwide and its incidence, especially adenocarcinoma type, is continuously increasing. Also, Hepatocellular carcinoma, Cholangiocarcinoma and pancreatic cancer represent a very interesting model to multidisciplinary approach and recently new drugs are used in their treatment. Currently, new clinical trials are designed including classic chemotherapy in association with either small molecule inhibitors (i.e. Tyrosine Kinase inhibitors) and/or monoclonal antibody (i.e. anti-EGFR antibody). Moreover, a comprehensive list of new molecules for target therapy is included in this issue. The development of new treatment modalities (multidisciplinary approach) and targeted therapy approaches have contributed to improving the outcome in these cancer diseases. During the past few years, remarkable progress in molecular biology of malignancy, the discovery of specific targets, and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress in cancer treatment, also in GI non-colorectal cancer treatment
Type III pleuropulmonary blastoma in a 7-month-old female baby with impending respiratory failure: a case report
INTRODUCTION: Pleuropulmonary blastoma is a very rare, aggressive, embryonal pulmonary neoplasm which mostly affects children under the age of 5. According to the histopathological features, three subtypes of pleuropulmonary blastoma have been recognized: type I (purely cystic), type II (grossly visible cystic and solid elements) and type III (purely solid). Characteristics of type I and type II blastoma allow an earlier diagnosis compared with type III. Here we present a case report of an unusual presentation of type III pleuropulmonary blastoma. CASE PRESENTATION: We describe the case of a 7-month-old female baby of Italian mother and Kurdish father who was diagnosed with type III pleuropulmonary blastoma, which entirely occupied her right hemithorax. CONCLUSIONS: The reported case is an unusual presentation because type III pleuropulmonary blastoma typically occurs in older children. The complete re-expansion of her residual, previously totally compressed, right lung observed immediately after the resection of the lesion suggests an atypical rapid growth of this embryonal tumor in the late phase of gestation or after delivery. This case report suggests that, in addition to other childhood tumors, type III pleuropulmonary blastoma should be included in the differential diagnosis of solid nonhomogeneous thoracic large masses, compressing the mediastinal and chest wall structures in infants. This is an original case report of interest for several specialities such us pediatrics, radiology, surgery and oncology
Involvement of the Soluble Urokinase Receptor in Chondrosarcoma Cell Mobilization
High levels of urokinase receptor (uPAR) in tissue and serum of patients with chondrosarcoma correlate with poor prognosis. First, we analyzed the uPAR levels in tissues and plasma of five patients affected by chondrosarcoma. Interestingly, very high levels of uPAR and its soluble forms (SuPAR) were found on tumor cell surfaces and plasma, respectively, of two patients with lung metastases. Therefore, to investigate the role of SuPAR in chondrosaromas, we generated a primary cell culture from a chondrosarcoma tissue overexpressing uPAR on cell surfaces. We found that chondrosarcoma-like primary culture cells release a large amount of SuPAR in the medium. In vitro, SuPAR elicits chondrosarcoma cell migration likely through its uPAR88-92 sequence, since the DII88-183 or DIIDIIR88-284 uPAR domains retain motogen effect whereas DI1-87 or DIII184-284 domains, both lacking the uPAR88-92 sequence, are ineffective. Chondrosarcoma cells cross matrigel in response to SuPAR, and their invasion capability is abrogated by RERF peptide which inhibits uPAR88-92 signalling. These findings assign a role to uPAR in mobilizing chondrosarcoma cells and suggest that RERF peptide may be regarded as a prototype to generate new therapeutics for the chondrosarcoma treatment
Impairment of acquisition of intravenous cocaine self-administration by RNA-interference of dopamine D1-receptors in the nucleus accumbens shell
Microdialysis during i.v. drug self-administration (SA) have implicated nucleus accumbens (NAc) shell DA in cocaine and heroin reinforcement. However, this correlative evidence has not been yet substantiated by experimental evidence obtained by studying the effect of selective manipulation of NAc shell DA transmission on cocaine and heroin SA. In order to investigate this issue, DA D1a receptor (D1aR) expression was impaired in the NAc shell and core by locally infusing lentiviral vectors (LV) expressing specific D1aR-siRNAs (LV-siRNAs). Control rats were infused in the same areas with LV expressing GFP. Fifteen days later, rats were trained to acquire i.v. cocaine or heroin self-administration (SA). At the end of behavioral experiments, in order to evaluate the effect of LV-siRNA on D1aR expression, rats were challenged with amphetamine and the brains were processed for immunohistochemical detection of c-Fos and D1aR. Control rats acquired i.v. cocaine and heroin SA. Infusion of LV-siRNAs in the medial NAc shell reduced D1aR density and the number of c-Fos positive nuclei in the NAc shell, while sparing the core, and prevented the acquisition of cocaine, but not heroin SA. In turn, LV-siRNAs infusion in the core reduced D1aR density and the number of c-Fos positive nuclei in the same area, while sparing the shell, and failed to affect acquisition of cocaine. The differential effect of LV impairment of NAc shell D1aR on cocaine and heroin SA indicates that NAc shell DA acting on D1aR specifically mediates cocaine reinforcement
Cosegregation of novel mitochondrial 16S rRNA gene mutations with the age-associated T414G variant in human cybrids
Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids. The results show that the T414G mutation does not cause per se any detectable bioenergetic change. Moreover, three mtDNA mutations clustered in the 16S ribosomal RNA gene cosegregated together with the T414G in the same cybrid cell line. Two of them, namely T1843C and A1940G, are novel and associate with a negative bioenergetic phenotype. The results are discussed in the more general context of the complex heterogeneity and the dramatic instability of the mitochondrial genome during cell culture of transmitochondrial cybrids
QTL analysis on a lemon population provides novel insights on the genetic regulation of the tolerance to the two-spotted spider mite attack
Background: Among the Citrus species, lemon (Citrus limon Burm f.) is one of the most affected by the two-spotted spider mite (Tetranychus urticae Koch). Moreover, chemical control is hampered by the mite's ability to develop genetic resistance against acaricides. In this context, the identification of the genetic basis of the host resistance could represent a sustainable strategy for spider mite control. In the present study, a marker-trait association analysis was performed on a lemon population employing an association mapping approach. An inter-specific full-sib population composed of 109 accessions was phenotyped through a detached-leaf assays performed in modified Huffaker cells. Those individuals, complemented with two inter-specific segregating populations, were genotyped using a target-sequencing approach called SPET (Single Primer Enrichment Technology), the resulting SNPs were employed for the generation of an integrated genetic map. Results: The percentage of damaged area in the full-sib population showed a quantitative distribution with values ranging from 0.36 to 9.67%. A total of 47,298 SNPs were selected for an association mapping study and a significant marker linked with resistance to spider mite was detected on linkage group 5. In silico gene annotation of the QTL interval enabled the detection of 13 genes involved in immune response to biotic and abiotic stress. Gene expression analysis showed an over expression of the gene encoding for the ethylene-responsive transcription factor ERF098-like, already characterized in Arabidopsis and in rice for its involvement in defense response. Conclusion: The identification of a molecular marker linked to the resistance to spider mite attack can pave the way for the development of marker-assisted breeding plan for the development of novel selection coupling favorable agronomical traits (e.g. fruit quality, yield) with a higher resistance toward the mit
Validation of a Commercial Loop-Mediated Isothermal Amplification (LAMP) Assay for the Rapid Detection of Anisakis spp. DNA in Processed Fish Products
Parasites belonging to the Anisakis genera are organisms of interest for human health because they are responsible for the Anisakiasis zoonosis, caused by the ingestion of raw or undercooked fish. Furthermore, several authors have reported this parasite to be a relevant inducer of acute or chronic allergic diseases. In this work, a rapid commercial system based on Loop-Mediated Isothermal Amplification (LAMP) was optimised and validated for the sensitive and rapid detection of Anisakis spp. DNA in processed fish products. The specificity and sensitivity of the LAMP assay for processed fish samples experimentally infected with Anisakis spp. larvae and DNA were determined. The LAMP system proposed in this study was able to give positive amplification for all the processed fish samples artificially contaminated with Anisakis spp., giving sensitivity values equal to 100%. Specificity tests provided no amplification for the Contracaecum, Pseudoterranova, or Hysterothylacium genera and uninfected samples. The limit of detection (LOD) of the LAMP assay proposed was 102 times lower than the real-time PCR method compared. To the best of our knowledge, this is the first report regarding the application of the LAMP assay for the detection of Anisakis spp. in processed fish products. The results obtained indicate that the LAMP assay validated in this work could be a reliable, easy-to-use, and convenient tool for the rapid detection of Anisakis DNA in fish product inspection
- …