4,769 research outputs found

    Pedaling time variability is increased in dropped riding position

    Get PDF
    Variability of cycle-to-cycle duration during a pedaling task is probably related to the rhythmic control of the lower limb muscles as in gait. Although walking variability has been extensively studied for its clinical and physiological implications, pedaling variability has received little attention. The present contribution determines the variability of the cycling time during a 10-min exercise as a function of upper body position. Nine healthy males were required to pedal on cycle-ergometer at a self-selected speed for 10 min in two different upper body positions [hands on upper handlebars (UP) or lower handlebars (DP)]. Time domain measures of cycling variability [total standard deviation (SDtot), mean standard deviation cycle-to-cycle intervals over 100 cycles (SD100), standard deviation of the average cycle-to-cycle intervals over 100 cycles (SDA100)] were measured. Moreover, the same time domain measures were also calculated for heart rate in order to discriminate possible involvements of autonomic regulation. Finally, the structure of the cycle variations has been analyzed in the framework of deterministic chaos calculating the maximum Lyapunov exponents. Significant increases in cycle-to-cycle variability were found for SDtot, SD100 in DP compared to UP, whereas cardiac parameters and other cycling parameters were not changed in the two positions. Moreover, the maximum Lyapunov exponent was significantly more negative in DP. The results suggest that small perturbations of upper body position can influence the control of cycling rhythmicity by increasing the variability in a dissipative deterministic regimen

    In-situ Investigation of the Early Stage of TiO2 epitaxy on (001) SrTiO3

    Get PDF
    We report on a systematic study of the growth of epitaxial TiO2 films deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single crystals. By using in-situ reflection high energy electron diffraction, low energy electron diffraction, x-ray photoemission spectroscopy and scanning probe microscopy, we show that the stabilization of the anatase (001) phase is preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a thickness between 2 and 4 nm. The data demonstrate that the formation of this phase is related to the activation of long range Sr migration from the substrate to the film. The role of interface Gibbs energy minimization, as a driving force for Sr diffusion, is discussed. Our results enrich the phase diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient SrTiO phase.Comment: 8 pages, 7 figure

    High quality MgB2 thin films in-situ grown by dc magnetron sputtering

    Get PDF
    Thin films of the recently discovered magnesium diboride (MgB2) intermetalic superconducting compound have been grown using a magnetron sputtering deposition technique followed by in-situ annealing at 830 C. High quality films were obtained on both sapphire and MgO substrates. The best films showed maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and anisotropic critical field with gamma = 2.5 close to the values obtained for single crystals. The preparation technique can be easily scaled to produce large area in-situ films.Comment: 7 pages, 4 figure

    Anatomy and kinematic evolution of an ancient passive margin involved into an orogenic wedge (Western Southern Alps, Varese area, Italy and Switzerland)

    Get PDF
    We make use of own geological mapping, interpretations of seismic reflection profiles and deep geophysical data to build a lithospheric-scale cross-section across the European Western Southern Alps (Varese area) and to model a progressive restoration from the end of Mesozoic rifting to present-day. Early phases of Alpine orogeny were characterized by Europe-directed thrusting, whereas post-Oligocene shortening led to basement-involving crustal accretion accompanied by backfolding, and consistent with the kinematics of the adjoining Ivrea Zone. Wedging was favored by a significant component of reactivation of the inherited Adriatic rifted margin. Our results also suggest that, during the collisional and post-collisional tectonics, lithosphere dynamics drove diachronically the onset of tectonic phases (i.e., wedging and slab retreat), from east to west, across the Western Southern Alps

    An Old but Lively Nanomaterial: Exploiting Carbon Black for the Synthesis of Advanced Materials

    Get PDF
    Carbon black (CB) is an old-concept but versatile carbonaceous material prone to be structurally and chemically modified under quite mild wet conditions. Recently, we exploited the potentiality of CB for the production of a highly varied array of advanced materials with applications in energetics, water remediation and sensoristic. The proposed approaches are devised to meet specific needs: low production costs, scalable synthetic approaches, flexibility i.e. easy tuning of chemico-physical properties of the carbon-based advanced materials. Two main approaches have been exploited: modification of CB at the surface and highly CB de-structuration. The former approach allows obtaining highly homogenous CB-modified nanoparticles (around 160 nm) with tunable surface properties (hydrophilicity, typology of functional groups and surface charge density, pore size distribution), supports for ionic liquid (SILP) and composites (carbon-iron oxide). The latter approach exploiting a top-down demolition of CB produces a highly versatile graphene related material (GRM), made up by stacked short graphene-like layers (GL) particularly suitable for advanced composites synthesis and ultrathin carbon-based films production

    Assessment of blood perfusion quality in laparoscopic colorectal surgery by means of Machine Learning

    Get PDF
    An innovative algorithm to automatically assess blood perfusion quality of the intestinal sector in laparoscopic colorectal surgery is proposed. Traditionally, the uniformity of the brightness in indocyanine green-based fluorescence consists only in a qualitative, empirical evaluation, which heavily relies on the surgeon’s subjective assessment. As such, this leads to assessments that are strongly experience-dependent. To overcome this limitation, the proposed algorithm assesses the level and uniformity of indocyanine green used during laparoscopic surgery. The algorithm adopts a Feed Forward Neural Network receiving as input a feature vector based on the histogram of the green band of the input image. It is used to (i) acquire information related to perfusion during laparoscopic colorectal surgery, and (ii) support the surgeon in assessing objectively the outcome of the procedure. In particular, the algorithm provides an output that classifies the perfusion as adequate or inadequate. The algorithm was validated on videos captured during surgical procedures carried out at the University Hospital Federico II in Naples, Italy. The obtained results show a classification accuracy equal to 99.9 % , with a repeatability of 1.9 %. Finally, the real-time operation of the proposed algorithm was tested by analyzing the video streaming captured directly from an endoscope available in the OR
    • …
    corecore