2,894 research outputs found

    Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure

    Smoothing tautologies, hidden dynamics, and sigmoid asymptotics for piecewise smooth systems

    Get PDF
    Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the implementation of decisions or control strategies. To understand what is lost, and what can be retained, when we model a switch as an instantaneous event, requires a consideration of so-called hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the form of nonlinear switching terms. A general expression for the switch can be developed in the form of a series of sigmoid functions. We review the key steps in extending the Filippov's method of sliding modes to such systems. We show how even slight nonlinear effects can hugely alter the behaviour of an electronic control circuit, and lead to `hidden' attractors inside the switching surface.Comment: 12 page

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    Dynamics of symmetric dynamical systems with delayed switching

    Get PDF
    Abstract: We study dynamical systems that switch between two different vector fields depending on a discrete variable and with a delay. When the delay reaches a problem-dependent critical value, so-called event collisions occur. This paper classifies and analyzes event collisions, a special type of discontinuity-induced bifurcations, for periodic orbits. Our focus is on event collisions of symmetric periodic orbits in systems with full reflection symmetry, a symmetry that is prevalent in applications. We derive an implicit expression for the Poincaré map near the colliding periodic orbit. The Poincaré map is piecewise smooth, finite-dimensional, and changes the dimension of its image at the collision. In the second part of the paper we apply this general result to the class of unstable linear single-degree-of-freedom oscillators where we detect and continue numerically collisions of invariant tori. Moreover, we observe that attracting closed invariant polygons emerge at the torus collision

    Bifurcation Phenomena in Two-Dimensional Piecewise Smooth Discontinuous Maps

    Get PDF
    In recent years the theory of border collision bifurcations has been developed for piecewise smooth maps that are continuous across the border, and has been successfully applied to explain nonsmooth bifurcation phenomena in physical systems. However, many switching dynamical systems have been found to yield two-dimensional piecewise smooth maps that are discontinuous across the border. The theory for understanding the bifurcation phenomena in such systems is not available yet. In this paper we present the first approach to the problem of analysing and classifying the bifurcation phenomena in two-dimensional discontinuous maps, based on a piecewise linear approximation in the neighborhood of the border. We explain the bifurcations occurring in the static VAR compensator used in electrical power systems, using the theory developed in this paper. This theory may be applied similarly to other systems that yield two-dimensional discontinuous maps

    Coexisting patterns of population oscillations: the degenerate Neimark Sacker bifurcation as a generic mechanism

    Full text link
    We investigate a population dynamics model that exhibits a Neimark Sacker bifurcation with a period that is naturally close to 4. Beyond the bifurcation, the period becomes soon locked at 4 due to a strong resonance, and a second attractor of period 2 emerges, which coexists with the first attractor over a considerable parameter range. A linear stability analysis and a numerical investigation of the second attractor reveal that the bifurcations producing the second attractor occur naturally in this type of system.Comment: 8 pages, 3 figure
    corecore