7,002 research outputs found

    Power Beacon-Assisted Millimeter Wave Ad Hoc Networks

    Get PDF
    Deployment of low cost power beacons (PBs) is a promising solution for dedicated wireless power transfer (WPT) in future wireless networks. In this paper, we present a tractable model for PB-assisted millimeter wave (mmWave) wireless ad hoc networks, where each transmitter (TX) harvests energy from all PBs and then uses the harvested energy to transmit information to its desired receiver. Our model accounts for realistic aspects of WPT and mmWave transmissions, such as power circuit activation threshold, allowed maximum harvested power, maximum transmit power, beamforming and blockage. Using stochastic geometry, we obtain the Laplace transform of the aggregate received power at the TX to calculate the power coverage probability. We approximate and discretize the transmit power of each TX into a finite number of discrete power levels in log scale to compute the channel and total coverage probability. We compare our analytical predictions to simulations and observe good accuracy. The proposed model allows insights into effect of system parameters, such as transmit power of PBs, PB density, main lobe beam-width and power circuit activation threshold on the overall coverage probability. The results confirm that it is feasible and safe to power TXs in a mmWave ad hoc network using PBs.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Coupled-resonator-induced transparency with a squeezed vacuum

    Full text link
    We present the first experimental observation of quantum fluctuation spectra in two coupled optical cavities with an injected squeezed vacuum light. The quadrature components of the reflected squeezed vacuum spectra are measured by phase sensitive homodyne detector. The experimental results demonstrate coupled-resonator-induced transparency in the quantum regime, in which electromagnetically-induced-transparency-like characteristic of the absorption and dispersion properties of the coupled optical cavities determines the line-shape of the reflected quantum noise spectra.Comment: 4 pages, 4 figures, appear in Phys. Rev. Let

    A Vertical Resonance Heating Model for X- or Peanut-Shaped Galactic Bulges

    Full text link
    We explore a second order Hamiltonian vertical resonance model for X-shaped or peanut-shaped galactic bulges. The X-shape is caused by the 2:1 vertical Lindblad resonance with the bar, with two vertical oscillation periods per orbital period in the bar frame. We examine N-body simulations and find that due to the bar slowing down and disk thickening during bar buckling, the resonance and associated peanut-shape moves outward. The peanut-shape is consistent with the location of the vertical resonance, independent of whether the bar buckled or not. We estimate the resonance width from the potential m=4 Fourier component and find that the resonance is narrow, affecting orbits over a narrow range in the angular momentum distribution, dL/L ~ 0.05. As the resonance moves outward, stars originally in the mid plane are forced out of the mid plane into orbits just within the resonance separatrix. The height of the separatrix orbits, estimated from the Hamiltonian model, is approximately consistent with the peanut-shape height. The X-shape is comprised of stars in the vicinity of the resonance separatrix. The velocity distributions from the simulations illustrate that low inclination orbits are depleted within resonance. Within resonance, the vertical velocity distribution is broad, consistent with resonant heating caused by the passage of the resonance through the disk. In the Milky Way bulge we relate the azimuthally averaged mid-plane mass density near the vertical resonance to the rotation curve and bar pattern speed. At an estimated vertical resonance galactocentric radius of ~1.3 kpc, we confirm a mid-plane density of ~5x10^8 Msol/kpc^3, consistent with recently estimated mass distributions. We find that the rotation curve, bar pattern speed, 2:1 vertical resonance location, X-shape tips, and mid-plane mass density, are all self-consistent in the Milky Way galaxy bulge.Comment: accepted for publication in MNRA

    HIF-1α Contributes to Hypoxia-induced Invasion and Metastasis of Esophageal Carcinoma via Inhibiting E-cadherin and Promoting MMP-2 Expression

    Get PDF
    Hypoxia-inducible factor-1α (HIF-1α) has been found to enhance tumor invasion and metastasis, but no study has reported its action in esophageal carcinoma. The goal of this study was to explore the probable mechanism of HIF-1α in the invasion and metastasis of esophageal carcinoma Eca109 cells in vitro and in vivo. mRNA and protein expression of HIF-1α, E-cadherin and matrix metalloproteinase-2 (MMP-2) under hypoxia were detected by RT-PCR and Western blotting. The effects of silencing HIF-1α on E-cadherin, MMP-2 mRNA and protein expression under hypoxia or normoxia were detected by RT-PCR and Western blotting, respectively. The invasive ability of Eca109 cells was tested using a transwell chambers. We established an Eca109-implanted tumor model and observed tumor growth and lymph node metastasis. The expression of HIF-1α, E-cadherin and MMP-2 in xenograft tumors was detected by Western blotting. After exposure to hypoxia, HIF-1α protein was up-regulated, both mRNA and protein levels of E-cadherin were down-regulated and MMP-2 was up-regulated, while HIF-1α mRNA showed no significant change. SiRNA could block HIF-1α effectively, increase E-cadherin expression and inhibit MMP-2 expression. The number of invading cells decreased after HIF-1α was silenced. Meanwhile, the tumor volume was much smaller, and the metastatic rate of lymph nodes and the positive rate were lower in vivo. Our observations suggest that HIF-1α inhibition might be an effective strategy to weaken invasion and metastasis in the esophageal carcinoma Eca109 cell line
    • …
    corecore