1,126 research outputs found

    Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC

    Full text link
    The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100 GeV). A_N was obtained as a function of momentum transfer -t. The results were fit with theoretical models which allow us to assess the contribution from a hadronic spin flip amplitude.Comment: Contribution to the proceedings of the 16th International Spin Physics Symposium, spin2004 (Trieste

    RHIC polarimetry

    Get PDF
    Polarimeters were developed to measure the polarization of the proton beam at RHIC in relative scale through the asymmetry measurement of the elastic proton-carbon scattering. Recoil carbon ions with kinetic energy of 400 ≀ E ≀ 900 keV were detected by silicon strip detectors installed at 90° with respect to the beam. The absolute polarization is given by normalizing against another polarimeter implemented at RHIC, namely a polarized hydrogen gas jet polarimeter. In this report, the details of polarization measurements, data analysis, and systematic uncertainties are discussed based on the data taken during ∫s = 200 GeV operation of Run 05 at RHIC

    Study of the Largest Multiwavelength Campaign of the Microquasar GRS 1915+105

    Get PDF
    We present the results from a multiwavelength campaign of GRS 1915+105 performed from 2000 April 16 to 25. This is one of the largest coordinated set of observations ever performed for this source, covering the wide energy band in radio (13.3-0.3 cm), near-infrared (J-H-K), X-rays and Gamma-rays (from 1 keV to 10 MeV). During the campaign GRS 1915+105 was predominantly in the "plateau" (or low/hard) state but sometimes showed soft X-ray oscillations: before April 20.3, rapid, quasi-periodic (~= 45 min) flare-dip cycles were observed. The radio flares observed on April 17 shows frequency- dependent peak delay, consistent with an expansion of synchrotron-emitting region starting at the transition from the hard-dip to the soft-flare states in X-rays. On the other hand, infrared flares on April 20 appear to follow (or precede) the beginning of X-ray oscillations with an inconstant time delay of ~= 5-30 min. This implies that the infrared emitting region is located far from the black hole by >~ 10E13 cm, while its size is <~ 10E12 cm constrained from the time variability. We find a good correlation between the quasi-steady flux level in the near-infrared band and in the X-ray band. From this we estimate that the reprocessing of X-rays, probably occurring in the outer parts of the accretion disk, accounts for about 20-30% of the observed K magnitude in the plateau state. The OSSE spectrum in the 0.05-10 MeV band is represented by a single power law with a photon index of 3.1 extending to ~1 MeV with no cutoff. The power-law slope above ~30 keV is found to be very similar between different states in spite of large flux variations in soft X-rays, implying that the electron energy distribution is not affected by the change of the state in the accretion disk.Comment: 31 pages, 11 figures. Accepted for publication in ApJ, vol. 571, 2002. Minor corrections. Figure 2 is revised (numbers on the top axis are corrected). References are update

    Understanding signaling cascades in melanoma

    Get PDF
    Understanding regulatory pathways involved in melanoma development and progression has advanced significantly in recent years. It is now appreciated that melanoma is the result of complex changes in multiple signaling pathways that affect growth control, metabolism, motility and the ability to escape cell death programs. Here we review the major signaling pathways currently known to be deregulated in melanoma with an implication to its development and progression. Among these pathways are Ras, B-Raf, MEK, PTEN, phosphatidylinositol-3 kinase (PI3Ks) and Akt which are constitutively activated in a significant number of melanoma tumors, in most cases due to genomic change. Other pathways discussed in this review include the [Janus kinase/signal transducer and activator of transcription (JAK/STAT), transforming growth factor-beta pathways which are also activated in melanoma, although the underlying mechanism is not yet clear. As a paradigm for remodeled signaling pathways, melanoma also offers a unique opportunity for targeted drug development.Fil: Lopez Bergami, Pablo Roberto. Sanford-burnham Medical Research Institute; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Fitchmann, B. Sanford-burnham Medical Research Institute; Estados UnidosFil: Ronai, ZeÂŽev. Sanford-burnham Medical Research Institute; Estados Unido

    Energy Dependence of a Low Frequency QPO in GRS 1915+105

    Get PDF
    We analyze a set of three RXTE Target of Opportunity observations of the Galactic microquasar GRS 1915+105, observed on April 2000, during a multi-wavelength campaign. During the three observations, a strong, variable low frequency (2-9 Hz) quasi periodic oscillation (hereafter QPO), often referred to as the ubiquitous QPO, is detected together with its first harmonic. We study the spectral properties of both features, and show that : 1) their frequency variations are better correlated with the soft X-ray flux (2-5 keV), favoring thus the location of the QPO in the accretion disk; 2) the QPO affects more the hard X-rays, usually taken as the signature of an inverse compton scattering of the soft photons in a corona; 3) the fundamental and its harmonic do not behave in the same manner: the fundamental sees its power increase with the energy up to 40 keV, whereas the harmonic increases up to ∌10\sim 10 keV. The results presented here could find an explanation in the context of the Accretion-Ejection Instability, which could appear as a rotating spiral or hot point located in the disk, between its innermost edge and the corotation radius. The presence of the harmonic could then be a signature of the non-linear behavior of the instability. The high-energy (>40 keV) decrease of the fundamental would favor an interpretation where most or all of the quasi-periodic modulation at high energies comes, not from the comptonized corona as usually assumed, but from a hot point in the optically thick diskComment: 8 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets

    Get PDF
    We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)Comment: 19 pages, 10 figures, 2 tables, accepted by the Astronomical Journal; online only material is available from http://www.cv.nrao.edu/2cmVLBA/pub/MOJAVE_VI_suppl.zi

    Measurement of the Pion Form Factor in the Energy Range 1.04-1.38 GeV with the CMD-2 Detector

    Full text link
    The cross section for the process e+e−→π+π−e^+e^-\to\pi^+\pi^- is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 e+e−e^+e^- events, 82000 ÎŒ+Ό−\mu^+\mu^- events, and 33000 π+π−\pi^+\pi^- events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.Comment: 5 pages, 2 figure
    • 

    corecore