70 research outputs found

    Longitudinal Changes in the Motor Learning- Related Brain Activation Response in Presymptomatic Huntington\u27s Disease

    Full text link
    Neurocognitive decline, including deficits in motor learning, occurs in the presymptomatic phase of Huntington’s disease (HD) and precedes the onset of motor symptoms. Findings from recent neuroimaging studies have linked these deficits to alterations in fronto-striatal and fronto-parietal brain networks. However, little is known about the temporal dynamics of these networks when subjects approach phenoconversion. Here, 10 subjects with presymptomatic HD were scanned with 15O-labeled water at baseline and again 1.5 years later while performing a motor sequence learning task and a kinematically matched control task. Spatial covariance analysis was utilized to characterize patterns of change in learningrelated neural activation occurring over time in these individuals. Pattern expression was compared to corresponding values in 10 age-matched healthy control subjects. Spatial covariance analysis revealed significant longitudinal changes in the expression of a specific learning-related activation pattern characterized by increasing activity in the right orbitofrontal cortex, with concurrent reductions in the right medial prefrontal and posterior cingulate regions, the left insula, left precuneus, and left cerebellum. Changes in the expression of this pattern over time correlated with baseline measurements of disease burden and learning performance. The network changes were accompanied by modest improvement in learning performance that took place concurrently in the gene carriers. The presence of increased network activity in the setting of stable task performance is consistent with a discrete compensatory mechanism. The findings suggest that this effect is most pronounced in the late presymptomatic phase of HD, as subjects approach clinical onset

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Dorfman-Chanarin syndrome

    No full text

    Quantifying significance of topographical similarities of disease-related brain metabolic patterns.

    Get PDF
    Multivariate analytical routines have become increasingly popular in the study of cerebral function in health and in disease states. Spatial covariance analysis of functional neuroimaging data has been used to identify and validate characteristic topographies associated with specific brain disorders. Voxel-wise correlations can be used to assess similarities and differences that exist between covariance topographies. While the magnitude of the resulting topographical correlations is critical, statistical significance can be difficult to determine in the setting of large data vectors (comprised of over 100,000 voxel weights) and substantial autocorrelation effects. Here, we propose a novel method to determine the p-value of such correlations using pseudo-random network simulations

    F-FPCIT

    No full text
    Our previous dosimetry studies have demonstrated that for dopaminergic radiotracers, 18 F-FDOPA and 18 F-FPCIT, the urinary bladder is the critical organ. As these tracers accumulate in the basal ganglia (BG) with high affinity and long residence times, radiation dose to the BG may become significant, especially in normal control subjects. We have performed dynamic PET measurements using 18 F-FPCIT in 16 normal adult subjects to determine if in fact the BG, although not a whole organ, but a well-defined substructure, receives the highest dose. Regions of interest were drawn over left and right BG structures. Resultant time-activity curves were generated and used to determine residence times for dosimetry calculations. S-factors were computed using the MIRDOSE3 nodule model for each caudate and putamen. For 18 F-FPCIT, BG dose ranged from 0.029 to 0.069 mGy/MBq. In half of all subjects, BG dose exceeded 85% of the published critical organ (bladder) dose, and in three of those, the BG dose exceeded that for the bladder. The BG can become the dose-limiting organ in studies using dopamine transporter ligands. For some normal subjects studied with F-18 or long half-life radionuclide, the BG may exceed bladder dose and become the critical structure
    • …
    corecore