19 research outputs found

    Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV

    Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels.

    Full text link
    [en] PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs

    Identify etiology of morbidity events of earlier children among multigravida women

    No full text
    Morbidity condition are more prevalent in the children who are exposed to various risk factors like overcrowding, poor nutrition etc. morbidity in the children residing in the rural area is more as compared to the urban area.Because socio-economical strata and standard of living, inadequate knowledge.Children are the future of any healthy nation they are asset of nation, unfortunately this assets falls children, because of poor maintenance of health, Malaria and acute respiratory infection are higher among children in rural setting and children whose mothers are 16–17 and 28–33 years of age. Objective: To identify the etiology of morbidity events of earlier children among multigravida women. Research Methodology: The quantitative approach and community based cross-sectional study design was used. Were enrolled 492 multigravida women with her 992 earlier children from 0-18 yr age group with used simple random sampling technique, Analyses was done using SPSS version 26.00 and identify etiology events of earlier children among multigravida women. Result: major finding identify etiology of morbidity events of earlier children among multigravida women’s group was G2P2 in that; 1(0.2%) illness having before pregnancy in multigravida women and having illness during pregnancy, 23(3.8%) were taken treatment during pregnancy, 50(8.2%) women were having consanguinity marriage

    Mental state and emotion detection from musically stimulated EEG

    No full text
    Abstract This literature survey attempts to clarify different approaches considered to study the impact of the musical stimulus on the human brain using EEG Modality. Glancing at the field through various aspects of such studies specifically an experimental protocol, the EEG machine, number of channels investigated, feature extracted, categories of emotions, the brain area, the brainwaves, statistical tests, machine learning algorithms used for classification and validation of the developed model. This article comments on how these different approaches have particular weaknesses and strengths. Ultimately, this review concludes a suitable method to study the impact of the musical stimulus on brain and implications of such kind of studies

    Lethal lung hypoplasia and vascular defects in mice with conditional Foxf1 overexpression

    No full text
    FOXF1 heterozygous point mutations and genomic deletions have been reported in newborns with the neonatally lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). However, no gain-of-function mutations in FOXF1 have been identified yet in any human disease conditions. To study the effects of FOXF1 overexpression in lung development, we generated a Foxf1 overexpression mouse model by knocking-in a Cre-inducible Foxf1 allele into the ROSA26 (R26) locus. The mice were phenotyped using micro-computed tomography (micro-CT), head-out plethysmography, ChIP-seq and transcriptome analyses, immunohistochemistry, and lung histopathology. Thirty-five percent of heterozygous R26-Lox-Stop-Lox (LSL)-Foxf1 embryonic day (E)15.5 embryos exhibit subcutaneous edema, hemorrhages and die perinatally when bred to Tie2-cre mice, which targets Foxf1 overexpression to endothelial and hematopoietic cells. Histopathological and micro-CT evaluations revealed that R26Foxf1; Tie2-cre embryos have immature lungs with a diminished vascular network. Neonates exhibited respiratory deficits verified by detailed plethysmography studies. ChIP-seq and transcriptome analyses in E18.5 lungs identified Sox11, Ghr, Ednrb, and Slit2 as potential downstream targets of FOXF1. Our study shows that overexpression of the highly dosage-sensitive Foxf1 impairs lung development and causes vascular abnormalities. This has important clinical implications when considering potential gene therapy approaches to treat disorders of FOXF1 abnormal dosage, such as ACDMPV

    Comparative Analyses of Lung Transcriptomes in Patients with Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins and in <i>Foxf1</i> Heterozygous Knockout Mice

    No full text
    <div><p>Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. <i>FOXF1</i> haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of <i>Foxf1</i> exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 <i>Foxf1</i><sup>+/−</sup> mice when compared to their wildtype littermate controls; 14 genes, <i>COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP,</i> and <i>SIRPA,</i> were found common to both ACDMPV and <i>Foxf1</i> heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.</p></div
    corecore