54 research outputs found

    TECHNIQUES TO PROVIDE A RECOMMENDATION ENGINE FOR ALERT CONFIGURATIONS

    Get PDF
    False alerts are a large problem in the observability space. Noisy alerts can be caused by a variety of factors but can be primarily caused due to incorrect alert configurations. Presented herein are techniques through which personalized recommendations can be provided for a particular enterprise regarding observability alert configurations that are based alerts of similarly situated enterprises. The recommendations may be applied only on explicit approval from the particular enterprise. Techniques presented herein may also enable enterprises to set up customized alerts and detect problems in their environments without a lot of configurations

    Effect of super-optimal levels of fertilizers on soil enzymatic activities during growth stages of wheat crop on an Inceptisol

    Get PDF
    A field experiment was conducted during 2010-2011 and 2011-2012 to investigate the effect of optimal (100% NPK) to super-optimal doses (200% NPK) of mineral fertilizers on soil enzymes such as dehydrogenase (DHA), acid phosphatase (Ac-PA), alkaline phosphatase (Alk-PA), fluorescien diacetate hydrolysis (FDA), urease and nitrate reductase (NRA) at three physiological stages (CRI, anthesis and maturity) of wheat crop on an Inceptisol. Dehydrogenase activity was reduced by 28-37% when fertilizer application was at super-optimal dose (200% NPK), whereas, urease and NRA responded positively in the range of 43-44% and 213-231% respectively. Alk-PAwas 7.3-7.9% higher in treatments receiving 125% NPK as compared to control (100% NPK); whereas, Ac-PA declines in the plots receiving 175 and 200% of recommended dose of fertilizer (RDF) as compared to 150% NPK levels. Addition of 175% RDF increased the FDA to the tune of 46-53% as compared to 100% NPK. A significant (P?0.05) positive interaction between fertilizer treatments and physiological stages of wheat growth was observed on soil enzyme activities (except urease and NRA) being highest at the anthesis stage of wheat. Correlation matrix analysis showed that DHA was correlated with the studied enzyme activities except Ac-PA and FDA; whereas, strong correlation was observed between urease and NRA (r=0.981, P=0.01). This study provides theoretical and practical base for avoiding super optimal application of fertilisers which hinders the enzyme activities and vis-a-vis sustainable nutrient enrichment under rhizosphere

    Growth promoting activity of Pangasianodon hypophthalmus recombinant growth hormone expressed in Escherichia coli

    Get PDF
    Recombinant growth hormone of Pangasianodon hypophthalmus (rPhGH) was efficiently expressed in Escherichia coli BL 21 (DE3) cells. The expression vector pET-32a(+) was used to clone and express a 550 bp long cDNA fragment, which encodes the mature region of growth hormone. The rPhGH was expressed as a 6X HIS-tag fusion protein in E. coli upon induction by Isopropyl b-D-thiogalactoside, and formed insoluble inclusion bodies in the host cells. SDS-PAGE analysis indicated that the molecular weight of the fusion protein was about 23 kDa, which is comparable to the theoretical value of the mature growth hormone of the fish. The expressed protein was recovered by solubilising the inclusion bodies under denaturing conditions with urea and then the denatured proteins were refolded and purified on Ni-NTA column. The purified recombinant protein was confirmed by Western blot analysis using anti-His antibodies. Total yield of the refolded and purified protein was 20 mg l-1 of LB medium. Biological activity of the purified recombinant protein was determined in in vivo bioassay by its ability to promote growth in rohu (Labeo rohita) fingerlings, injected with three different concentrations of the hormone. A significant increase in growth was observed in rohu fingerlings administered with rPhGH at a dosage of 1.0 mg g body weight -1

    Empirical observation of natural farming inputs on nitrogen uptake, soil health, and crop yield of rice-wheat cropping system in the organically managed Inceptisol of Trans Gangetic plain

    Get PDF
    Natural Farming represents an agro-ecological methodology for farming that emphasizes regenerative practices with an aim to promote holistic ecological balance and reduce the dependence on external inputs as well as financial resources. Substantial concern has recently arisen over the need to promote agroecosystems that are more sustainable in order to improve the deteriorating soil health as well as reversing the yield plateau of crop. So, the current on farm field experiment was executed comprising of 8 treatments with different combination of natural farming inputs (Ghanjeevamrit, Jeevamrit, Beejamrit), organic fertilizer (such as FYM), integrated nutrient management (NPK, FYM, Azotobacter and Azolla) and in-organic(NPK) to examine and compare the consequence of natural farming inputs, organic fertilizer and in-organic dosage of fertilizer on soil nitrogen uptake, soil physicochemical properties, soil biological properties, soil microbial population and crop yields in a rice-wheat cropping system over two crop seasons 2021–23 [rice (Pusa-1509) and wheat (HD-3086)]. The study results demonstrated that there was significant (p < 0.05) increase in the soil’s nitrogen availability and nitrogen uptake with the use of natural farming inputs as compared to control treatment, whereas, natural farming treatments (TNF1, TNF2, TNF3, TMNF) were inferior than integrated nutrient management (TINM) and recommended doses of fertilizer (TRDF) treatment in case of nitrogen uptake by both rice and wheat crop. The soil enzymatic activity (Dehydrogenase, β-glucosidase, and urease), soil microbial biomass carbon and nitrogen, and soil microbial population (Bacteria, fungi, and actinomycetes) were significantly (p < 0.05) higher in treatment receiving natural farming inputs compare to in-organic fertilizer and organic fertilizer. A positive and significant correlation was observed between potential mineralization nitrogen and soil enzymatic activity (Dehydrogenase, β-glucosidase, and urease), soil microbial biomass carbon and nitrogen and soil microbial population (Bacteria, fungi, and actinomycetes). The crop yield at the end of experiment recorded to be highest in treatment TINM (75% RDF (In-organic) + 25% RDF (FYM) + BGA) i.e., (Rice- 4.76 t/ha and Wheat- 5.82 t/ha) compared to TRDF and TNF. A crop yield reduction of 14.2% was observed in treatment receiving natural farming inputs compare to TINM. A significant increase in crop yield was observed in TMNF (Jeevamrit (25%) + Ghanjeevamrit (25%) + 50% RDF through FYM + Beejamrit) compare to Tc (Control) and TFYM (Farmyard manure). Therefore, our study suggests that adoption of natural farming inputs over time can facilitate the enhancement of soil biological health of Inceptisol of Trans Gangetic Plain of India

    Biotechnology and the Politics of Truth : From the Green Revolution to an Evergreen Revolution

    Get PDF
    This paper investigates why and how issues around the diffusion of GM technologies and products to developing countries have become so central to a debate which has shifted away from technical issues of cost-benefit optimisation in a context of uniform mass production and consumption in the North, to the moral case for GM crops to feed the hungry and aid ‘development’ in the South. Using comparison between agricultural biotechnology and the ‘Green Revolution’ as a cross cutting theme, the contributions of this paper are threefold. Firstly, by analysing biotechnology as a set of overlapping frames within a discursive formation, four frames are identified which summarise key challenges presented by biotechnology era. Secondly, the use of Foucault's concept of bio-power to synthesise key themes from the frame analysis illuminates the ‘revolutionary’ nature of the biotech revolution. Thirdly, the potential of actor-network theory to provide a tools for the empirical study of processes of (re)negotiation of nature/society relations in the context of agricultural biotechnology controversies is explored

    Deciphering the role of phosphorus management under conservation agriculture based wheat production system

    Get PDF
    Phosphorus (P) is a vital element required by all living organism (plants, animals and microbes etc.). Its application in agriculture, whether in conventional or conservation agriculture, requires careful attention due to its low use efficiency, which typically does not exceed 20%. With the increasing acceptance of conservation agriculture (CA), it is crucial to develop protocols for P management to ensure sustainable wheat production. Therefore, a field trial was conducted from 2016–2017 to 2017–2018 in the India's semiarid eco-region to study the role of P on wheat productivity, quality, and resource use efficiency under CA-based production system. We assessed the impact of tillage operations and P management practices on wheat productivity, quality, and resource use efficiency. Three tillage and residue management options such as CT-R (conventional tillage without residue); NT-R (no tillage without maize residue) and NT + R (no tillage with maize residue @ 2.5 Mg ha−1) were laid-out in main plot and five P management options subplots viz. P1 (nitrogen and potash according to recommended but not P); P2 (17.2 kg P ha−1); P3 (17.2 kg of P ha−1 + microbial fertilizer); P4 (17.2 kg P ha−1 + compost inoculant culture) and P5 (34.4 kg P ha−1) in split plot design with three replicates. The results indicates that the combination of no-tillage with residue retention (maize residue @ 2.5 Mg ha−1) (NT + R) and the application of 34.4 kg P ha−1 (P5) significantly improved grain yield by ~43.2% compared to the control treatment (conventional tillage with no residue, CT – R, and no phosphorus application). NT + R also resulted in significantly better amino acid (~22.7%) and net protein yield (~21.2%) compared to CT – R. Regarding the P management strategy, the highest amino acid (49.1%) and protein yield (12.5%) were observed under the P5 treatment compared to the no-phosphorus treatment. Conjoint use of NT – R, along with the application of 17.2 kg P ha−1 and PSB (Phosphorus Solubilizing Bacteria), resulted in a significant increase in energy use efficiency of ~58% over other treatments combination. Furthermore, the NT + R plot that received 17.2 kg P ha−1 + PSB demonstrated higher P agronomic efficiency (~43%) and recovery efficiency (~53%) over control. The study's findings underscore the significance of adopting efficient P management strategies in CA to ensure the sustainable production of wheat

    Sensor-based precision nutrient and irrigation management enhances the physiological performance, water productivity, and yield of soybean under system of crop intensification

    Get PDF
    Sensor-based decision tools provide a quick assessment of nutritional and physiological health status of crop, thereby enhancing the crop productivity. Therefore, a 2-year field study was undertaken with precision nutrient and irrigation management under system of crop intensification (SCI) to understand the applicability of sensor-based decision tools in improving the physiological performance, water productivity, and seed yield of soybean crop. The experiment consisted of three irrigation regimes [I1: standard flood irrigation at 50% depletion of available soil moisture (DASM) (FI), I2: sprinkler irrigation at 80% ETC (crop evapo-transpiration) (Spr 80% ETC), and I3: sprinkler irrigation at 60% ETC (Spr 60% ETC)] assigned in main plots, with five precision nutrient management (PNM) practices{PNM1-[SCI protocol], PNM2-[RDF, recommended dose of fertilizer: basal dose incorporated (50% N, full dose of P and K)], PNM3-[RDF: basal dose point placement (BDP) (50% N, full dose of P and K)], PNM4-[75% RDF: BDP (50% N, full dose of P and K)] and PNM5-[50% RDF: BDP (50% N, full P and K)]} assigned in sub-plots using a split-plot design with three replications. The remaining 50% N was top-dressed through SPAD assistance for all the PNM practices. Results showed that the adoption of Spr 80% ETC resulted in an increment of 25.6%, 17.6%, 35.4%, and 17.5% in net-photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci), respectively, over FI. Among PNM plots, adoption of PNM3 resulted in a significant (p=0.05) improvement in photosynthetic characters like Pn (15.69 µ mol CO2 m−2 s−1), Tr (7.03 m mol H2O m−2 s−1), Gs (0.175 µmol CO2 mol−1 year−1), and Ci (271.7 mol H2O m2 s−1). Enhancement in SPAD (27% and 30%) and normalized difference vegetation index (NDVI) (42% and 52%) values were observed with nitrogen (N) top dressing through SPAD-guided nutrient management, helped enhance crop growth indices, coupled with better dry matter partitioning and interception of sunlight. Canopy temperature depression (CTD) in soybean reduced by 3.09–4.66°C due to adoption of sprinkler irrigation. Likewise, Spr 60% ETc recorded highest irrigation water productivity (1.08 kg ha−1 m−3). However, economic water productivity (27.5 INR ha−1 m−3) and water-use efficiency (7.6 kg ha−1 mm−1 day−1) of soybean got enhanced under Spr 80% ETc over conventional cultivation. Multiple correlation and PCA showed a positive correlation between physiological, growth, and yield parameters of soybean. Concurrently, the adoption of Spr 80% ETC with PNM3 recorded significantly higher grain yield (2.63 t ha−1) and biological yield (8.37 t ha−1) over other combinations. Thus, the performance of SCI protocols under sprinkler irrigation was found to be superior over conventional practices. Hence, integrating SCI with sensor-based precision nutrient and irrigation management could be a viable option for enhancing the crop productivity and enhance the resource-use efficiency in soybean under similar agro-ecological regions
    corecore