26 research outputs found
First-principles calculations of step formation energies and step interactions on TiN(001)
We study the formation energies and repulsive interactions of monatomic steps
on the TiN(001) surface, using density functional total-energy calculations.
The calculated formation energy of [100] oriented steps agree well with
recently reported experimental values; these steps are shown to have a rumpled
structure, with the Ti atoms undergoing larger displacements than the N atoms.
For steps that are parallel to [110], our calculations predict a nitrogen (N)
termination, as the corresponding formation energy is several hundred meV/\AA \
smaller than that of Ti-terminated steps
Unleashing shear: Role of intercellular traction and cellular moments in collective cell migration
In the field of endothelial biology, the term “shear forces” is tied to the forces exerted by the flowing
blood on the quiescent cells. But endothelial cells themselves also exert physical forces on their immediate and distant neighbors. Specific factors of such intrinsic mechanical signals most relevant to
immediate neighbors include normal (Fn) and shear (Fs) components of intercellular tractions, and those
factors most relevant to distant neighbors include contractile or dilatational (Mc) and shear (Ms) components of the moments of cytoskeletal forces. However, for cells within a monolayer, Fn, Fs, Mc, and Ms remain inaccessible to experimental evaluation. Here, we present an approach that enables quantitative assessment of these properties. Remarkably, across a collectively migrating sheet of pulmonary microvascular endothelial cells, Fs was of the same order of magnitude as Fn. Moreover, compared to the normal components (Fn, Mc) of the mechanical signals, the shear components (Fs, Ms) were more distinctive in the cells closer to the migration front. Individual cells had an innately collective tendency to migrate along the axis of maximum contractile moment e a collective migratory process we referred to as cellular plithotaxis. Notably, larger Fs and Ms were associated with stronger plithotaxis, but dilatational moment appeared to disengage plithotactic guidance. Overall, cellular plithotaxis was more strongly associated with the “shear forces” (Fs, Ms) than with the “normal forces” (Fn, Mc). Finally, the mechanical state of the cells with fast migration speed and those with highly circular shape were reminiscent of fluid-like and solid-like matter, respectively. The results repeatedly pointed to neighbors imposing shear forces on a cell as a highly significant event, and hence, the term “shear forces” must include not just the forces from flowing fluid but also the forces from the substrate and neighbors. Collectively, these advances set the stage for deeper understanding of mechanical signaling in cellular monolayers.Osteopathic Medicin
Monolayer Stress Microscopy: Limitations, Artifacts, and Accuracy of Recovered Intercellular Stresses
In wound healing, tissue growth, and certain cancers, the epithelial or the endothelial monolayer sheet expands. Within the expanding monolayer sheet, migration of the individual cell is strongly guided by physical forces imposed by adjacent cells. This process is called plithotaxis and was discovered using Monolayer Stress Microscopy (MSM). MSM rests upon certain simplifying assumptions, however, concerning boundary conditions, cell material properties and system dimensionality. To assess the validity of these assumptions and to quantify associated errors, here we report new analytical, numerical, and experimental investigations. For several commonly used experimental monolayer systems, the simplifying assumptions used previously lead to errors that are shown to be quite small. Out-of-plane components of displacement and traction fields can be safely neglected, and characteristic features of intercellular stresses that underlie plithotaxis remain largely unaffected. Taken together, these findings validate Monolayer Stress Microscopy within broad but well-defined limits of applicability
Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness
Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment
Comparative study of dimer vacancies and dimer-vacancy lines on Si(001) and Ge(001)
Although the clean Si(001) and Ge(001) surfaces are very similar, experiments
to date have shown that dimer-vacancy (DV) defects self-organize into vacancy
lines (VLs) on Si(001), but not on Ge(001). In this paper, we perform
empirical-potential calculations aimed at understanding the differences between
the vacancies on Si(001) and Ge(001). We identify three energetic parameters
that characterize the DVs on the two surfaces: the formation energy of a single
DV, the attraction between two DVs in adjacent dimer rows, and the strain
sensitivity of the formation energy of DVs and VLs. At the empirical level of
treatment of the atomic interactions (Tersoff potentials), all three parameters
are favorable for the self-assembly of DVs on the Si(001) surface rather than
on Ge(001). The most significant difference between the defects on Si(001) and
on Ge(001) concerns the formation energy of single DVs, which is three times
larger in the latter case. By calculating the strain-dependent formation
energies of DVs and VLs, we propose that the experimental observation of
self-assembly of vacancies on clean Ge(001) could be achieved by applying
compressive strains of the order of 2%.Comment: 3 tables, 4 figures, to appear in Surface Scienc
Atomic-scale perspective on the origin of attractive step interactions on Si(113)
Recent experiments have shown that steps on Si(113) surfaces self-organize
into bunches due to a competition between long-range repulsive and short-range
attractive interactions. Using empirical and tight-binding interatomic
potentials, we investigate the physical origin of the short-range attraction,
and report the formation and interaction energies of steps. We find that the
short-range attraction between steps is due to the annihilation of force
monopoles at their edges as they combine to form bunches. Our results for the
strengths of the attractive interactions are consistent with the values
determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication
Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness
Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment