47 research outputs found

    Parkinson’s Disease and the Immune System

    Get PDF
    The characteristic neuropathological markers of PD are the presence of Lewy bodies, containing modified alpha-synuclein amongst other proteins, in the surviving neurons, and the degeneration of neuromelanin-containing, dopaminergic neurons in the substance nigra pas compact region of the brain. In addition, the progressive nature of PD is characterized by chronic innate inflammation with microglial activation… open access: http://www.intechopen.com/books/mechanisms-in-parkinson-s-disease-models-and-treatments/innate-immune-system-and-parkinson-s-diseas

    Precompetitive consensus building to facilitate the use of digital health technologies to support Parkinson Disease drug development through regulatory science

    Get PDF
    Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinson’s Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Sex dimorphisms in the neuroprotective effects of estrogen in an animal model of Parkinson's disease

    No full text
    The incidence of certain neurological disorders, including Parkinson's disease, appears to be more prevalent in men. Studies involving estrogen treatment of ovariectomised rodents attribute this largely to the neuroprotective effects of estrogen. However, a neuroprotective role for physiological levels of circulating hormones in males and females is less clear. Using the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease to lesion the nigrostriatal dopaminergic (NSDA) pathway, we have shown that in females, endogenously produced estrogen is neuroprotective, whereas in males, gonadal factors increase striatal 6-OHDA toxicity. Intriguingly, estrogen, but not dihydrotestosterone, a nonaromatizable androgen, reversed the effects of orchidectomy on lesion size, raising the novel the hypothesis that enhanced male susceptibility may be attributable to the effects of endogenous testosterone only after its aromatization to estrogen. Thus, estrogen appears to exert opposite effects in the NSDA in males and females, being neuroprotective in females, but not in males, where it may even exacerbate neurodegenerative responses, with important implications for the clinical potential of estrogen-related compounds as neuroprotective agents. Preliminary experiments support the hypothesis that sex differences in the adult NSDA may result from the organisational actions of gonadal steroids during the critical neonatal period for the masculinization of the brain. Further studies are needed to determine whether this early organisation of a sexually differentiated neural circuitry may contribute to the emergence of neurodegenerative conditions such as Parkinson's disease

    Striatal susceptibility to a dopaminergic neurotoxin is independent of sex hormone effects on cell survival and DAT expression but is exacerbated by central aromatase inhibition

    No full text
    The aim of this study was to investigate further the hormone-dependent processes underlying sex differences in neurotoxic responses within the rat nigrostriatal dopaminergic (NSDA) pathway after partial lesioning with 6-OHDA, a state thought to mimic the early stages of Parkinson's disease where, in humans and animal models alike, males appear to be more susceptible. Contrary to our hypotheses, hormone manipulations (gonadectomy +/- oestrogen or androgen treatment) failed to alter survival of tyrosine hydroxylase immunoreactive cells in the substantia nigra pars compacta (SNc) after lesioning; this indicates that, unlike inherent sex differences in toxin-induced striatal dopamine depletion, sex differences in cell loss were not hormonally generated, and that hormone-dependent changes in dopamine depletion can occur independently of cell survival. In addition, hormonally induced changes in striatal expression of the dopamine transporter (DAT), an important factor for 6-OHDA toxicity, did not correlate with hormonal influences on striatal dopamine loss and, in males, central inhibition of aromatase prior to 6-OHDA infusion exacerbated striatal dopamine loss with no effect on SNc tyrosine hydroxylase-immunoreactive survival, suggesting locally generated oestrogen is neuroprotective. These results support the novel view that sex steroid hormones produced peripherally and centrally play a significant, sex-specific role within the sexually dimorphic NSDA pathway to modulate plastic, compensatory responses aimed at restoring striatal dopamine functionality, without affecting cell loss

    Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females

    No full text
    Epidemiological and clinical studies provide growing evidence for marked sex differences in the incidence of certain neurological disorders that are largely attributed to the neuroprotective effects of estrogen. Thus there is a keen interest in the clinical potential of estrogen-related compounds to act as novel therapeutic agents in conditions of neuronal injury and neurodegeneration such as Parkinson's disease. Studies employing animal models of neurodegeneration in ovariectomised female rats treated with estrogen support this hypothesis, yet experimental evidence for sex differences in the CNS response to direct neurotoxic insult is limited and, as yet, few studies have addressed the role played by endogenously produced hormones in neuroprotection. Therefore, in this study we aimed to determine (1) whether the prevailing levels of sex steroid hormones in the intact rat provide a degree of protection against neuronal assault in females compared with males and (2) whether sex differences depend solely on male/female differences in circulating estrogen levels or whether androgens could also play a role. Using the selective, centrally administered neurotoxin 6-hydroxydopamine, which induces a lesion in the nigrostriatal dopaminergic pathway similar to that seen in Parkinson's disease, we have demonstrated a sexually dimorphic (male-dominant), dose-dependent susceptibility in rats. Furthermore, following gonadectomy, dopamine depletion resulting from a submaximal dose of 6-hydroxydopamine (1 microg) was reduced in male rats, whereas in females, ovariectomy enhanced dopamine depletion. Administration of the nonaromatizable androgen dihydrotestosterone to gonadectomized animals had no significant effect on 6-hydroxydopamine toxicity in either males or females, whereas treatment of gonadectomized males and females with physiological levels of estrogen restored the extent of striatal dopamine loss to that seen in intact rats, viz, estrogen therapy reduced lesion size in females but increased it in males. Taken together, our findings strongly suggest that there are sex differences in the mechanisms whereby nigrostriatal dopaminergic neurones respond to injury. They also reveal that the reported clinically beneficial effects of estrogen in females may not be universally adopted for males. While the reasons for this gender-determined difference in response to the activational action of estrogen are unknown, we hypothesize that they may well be related to the early organizational events mediated by sex steroid hormones, which ultimately result in the sexual differentiation of the brain
    corecore