361 research outputs found

    Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    Get PDF
    AbstractParkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection

    Neuroprotective role for RORA in Parkinson’s disease revealed by analysis of post-mortem brain and a dopaminergic cell line

    Get PDF
    Parkinson's disease (PD) is almost twice as prevalent in men, which has largely been attributed to neuroprotective effect of oestradiol in women. RORA (retinoic acid receptor-related orphan receptor alpha) regulates the transcription of central aromatase, the enzyme responsible for local oestradiol synthesis, simultaneously, RORA expression is regulated by sex hormones. Moreover, RORA protects neurones against oxidative stress, a key mechanism contributing to the loss of dopaminergic neurones in PD. Therefore, we hypothesized that there would be sex differences in RORA expression in the substantia nigra pars compacta (SNpc), which could contribute to sex differences observed in PD prevalence and pathogenesis. In a case control study, qPCR and western blot analyses were used to quantify gene and protein expression in the SNpc of post-mortem brains (n = 14 late-stage PD and 11 age and sex matched controls). The neuroprotective properties of a RORA agonist were then investigated directly using a cell culture toxin-based model of PD coupled with measures of viability, mitochondrial function and apoptosis. RORA was expressed at significantly higher levels in the SNpc from control females' brains compared to males. In PD, we found a significant increase in SNpc RORA expression in male PD compared to female PD. Treatment with a RORA agonist showed a significant neuroprotection in our cell culture model of PD and revealed significant effects on intracellular factors involved in neuronal survival and demise. This study is the first to demonstrate a sex specific pattern of RORA protein and gene expression in the SNpc of controls post-mortem human brains, and to show that this is differentially altered in male and female PD subjects, thus supporting a role for RORA in sex-specific aspects of PD. Furthermore, our in vitro PD model indicates mechanisms whereby a RORA agonist exerts its neuroprotective effect, thereby highlighting the translational potential for RORA ligands in PD

    Ethane-beta-Sultam Modifies the Activation of the Innate Immune System Induced by Intermittent Ethanol Administration in Female Adolescent Rats

    Get PDF
    Intermittent ethanol abuse or ‘binge drinking’ during adolescence induces neuronal damage, which may be associated with cognitive dysfunction. To investigate the neurochemical processes involved, rats were administered either 1 g/kg or 2 g/kg ethanol in a ‘binge drinking’ regime. After only 3 weeks, significant activation of phagocytic cells in the peripheral (alveolar macrophages) and the hippocampal brain region (microglia cells) was present,as exemplified by increases in the release of pro-inflammatory cytokines in the macrophages and of iNOS in the microglia. This was associated with neuronal loss in the hippocampus CA1 region. Daily supplementation with a taurine prodrug, ethane-ÎČ-sultam, 0.028 g/kg, during the intermittent ethanol loading regime, supressed the release of the pro-inflammatory cytokines and of reactive nitrogen species, as well as neuronal loss, particularly in the rats administered the lower dose of ethanol, 1 g/kg. Plasma, macrophage and hippocampal taurine levels increased marginally after ethane-ÎČ-sultam supplementation. The ‘binge drinking’ ethanol rats administered 1 g/kg ethanol showed increased latencies to those of the control rats in their acquisition of spacial navigation in the Morris Water Maze, which was normalised to that of the controls values after ethane-ÎČ-sultam administration. Such results confirm that the administration of ethane-ÎČ-sultam to binge drinking rats reduces neuroinflammation in both the periphery and the brain, suppresses neuronal loss, and improved working memory of rats in a water maze study

    Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition

    Get PDF
    BACKGROUND: The role of both microglial activation and alpha-synuclein deposition in Parkinson's disease remain unclear. We have tested the hypothesis that if microglia play a primary role in Parkinson's disease pathogenesis, the microglial "activated" phenotype should be associated with histopathological and/or clinical features of the disease. METHODS: We have examined microglial MHC class II expression, a widely used marker of microglial activation, the occurrence of CD68-positive phagocytes and alpha-synuclein immunoreactivity in post-mortem human substantia nigra affected by idiopathic Parkinson's disease (PD). Using semi-quantitative severity ratings, we have examined the relationship between microglial activation, alpha-synuclein deposition, classical neuropathological criteria for PD, subtype of the disease and clinical course. RESULTS: While we did not observe an association between microglial MHC class II expression and clinical parameters, we did find a correlation between disease duration and the macrophage marker CD68 which is expressed by phagocytic microglia. In addition, we observed a significant correlation between the degree of MHC class II expression and alpha-synuclein deposition in the substantia nigra in PD. CONCLUSION: While microglia appeared to respond to alpha-synuclein deposition, MHC class II antigen expression by microglia in the substantia nigra cannot be used as an indicator of clinical PD severity or disease progression. In addition, a contributory or even causative role for microglia in the neuronal loss associated with PD as suggested by some authors seems unlikely. Our data further suggest that an assessment of microglial activation in the aged brain on the basis of immunohistochemistry for MHC class II antigens alone should be done with caution

    Novel 1-hydroxypyridin-2-one metal chelators prevent and res-cue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson’s disease

    Get PDF
    Ubiquitin proteasome system (UPS) impairment, excessive cellular oxidative stress and iron dyshomeostasis are key to substantia nigra dopaminergic neuronal de-generation in Parkinson's disease (PD); however, a link between these features remains unconfirmed. By using the proteasome inhibitor lactacystin we confirm that nigral injury via UPS impairment disrupts iron homeostasis, in turn increasing oxi-dative stress and promoting protein aggregation. We demonstrate the neuroprotec-tive potential of two novel 1-hydroxy-2(1H)-pyridinone (1,2-HOPO) iron chelators, compounds C6 and C9, against lactacystin-induced cell death. We demonstrate that this cellular preservation relates to the compounds’ iron chelating capabilities and subsequent reduced capacity of iron to form reactive oxygen species (ROS), where we also show that the ligands act as antioxidant agents. Our results also de-monstrate the ability of C6 and C9 to reduce intracellular lactacystin-induced α-synuclein burden. Stability constant measurements confirmed a high affinity of C6 and C9 for Fe3+ and display a 3:1 HOPO:Fe3+ complex formation at physiological pH. Reducing iron reactivity could prevent the demise of nigral dopaminergic neurons. We provide evidence that the lactacystin model presents with several neuropatho-logical hallmarks of PD related to iron dyshomeostasis and that the novel chelating compounds C6 and C9 can protect against lactacystin-related neurotoxicity

    Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study

    Get PDF
    The aetiology of Parkinson's disease (PD) is yet to be fully understood but it is becoming more and more evident that neuronal cell death may be multifactorial in essence. The main focus of PD research is to better understand substantia nigra homeostasis disruption, particularly in relation to the wide-spread deposition of the aberrant protein α-synuclein. Microarray technology contributed towards PD research with several studies to date and one gene, ALDH1A1 (Aldehyde dehydrogenase 1 family, member A1), consistently reappeared across studies including the present study, highlighting dopamine (DA) metabolism dysfunction resulting in oxidative stress and most probably leading to neuronal cell death. Neuronal cell death leads to increased inflammation through the activation of astrocytes and microglia. Using our dataset, we aimed to isolate some of these pathways so to offer potential novel neuroprotective therapeutic avenues. To that effect our study has focused on the upregulation of P2X7 (purinergic receptor P2X, ligand-gated ion channel, 7) receptor pathway (microglial activation) and on the NOS3 (nitric oxide synthase 3) pathway (angiogenesis). In summary, although the exact initiator of striatal DA neuronal cell death remains to be determined, based on our analysis, this event does not remain without consequence. Extracellular ATP and reactive astrocytes appear to be responsible for the activation of microglia which in turn release proinflammatory cytokines contributing further to the parkinsonian condition. In addition to tackling oxidative stress pathways we also suggest to reduce microglial and endothelial activation to support neuronal outgrowth

    Glitazone Treatment and Incidence of Parkinson’s Disease among People with Diabetes: A Retrospective Cohort Study

    Get PDF
    Study instruments supporting a retrospective cohort study that explored potential links between prescription of anti-diabetic glitazone (GTZ) drugs and incidence of Parkinson’s disease. Outputs include: information on patient demographics and characteristics; codes used to identify GTZ exposure; codes used to identify Parkinson’s disease; variable code listings; a checklist of items to be included in cohort study reports; an ISAC application form; and a CPRD research protocol

    DREADD activation of pedunculopontine cholinergic neurons reverses motor deficits and restores striatal dopamine signaling in parkinsonian rats

    Get PDF
    The brainstem-based pedunculopontine nucleus (PPN) traditionally associates with motor function, but undergoes extensive degeneration during Parkinson’s disease (PD), which correlates with axial motor deficits. PPN-Deep Brain Stimulation (DBS) can alleviate certain symptoms, but its mecha-nism(s) of action remains unknown. We previously characterized rats hemi-intranigrally injected with the proteasomal inhibitor lactacystin, as an accurate preclinical model of PD. Here we used a combination of chemogenetics with Positron Emission Tomography (PET) imaging for in vivo in-terrogation of discrete neural networks in this rat model of PD. Stimulation of excitatory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) expressed within PPN cholinergic neurons activated residual nigrostriatal dopaminergic neurons to produce pro-found motor recovery, which correlated with striatal dopamine efflux as well as restored dopamine receptor (DR) 1- and DR2-based medium spiny neuron (MSN) activity, as was ascertained with c-Fos-based immunohistochemistry and stereological cell counts. By revealing that the improved axi-al-related motor functions seen in PD patients receiving PPN-DBS may be due to stimulation of remaining PPN cholinergic neurons interacting with dopaminergic ones in both the Substantia Nigra pars compacta (SNpc) and the striatum, our data strongly favor the PPN cholinergic-midbrain dopaminergic connectome as mechanism for PPN-DBS’s therapeutic effects. These findings have implications for refining PPD-DBS as a promising treatment modality available to PD patients

    Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change

    Get PDF
    The Arctic is among the fastest-warming areas of the globe. Understanding the impact of climate change on foundational Arctic marine species is needed to provide insight on ecological resilience at high latitudes. Marine forests, the underwater seascapes formed by seaweeds, are predicted to expand their ranges further north in the Arctic in a warmer climate. Here, we investigated whether northern habitat gains will compensate for losses at the southern range edge by modelling marine forest distributions according to three distribution categories: cryophilic (species restricted to the Arctic environment), cryotolerant (species with broad environmental preferences inclusive but not limited to the Arctic environment), and cryophobic (species restricted to temperate conditions) marine forests. Using stacked MaxEnt models, we predicted the current extent of suitable habitat for contemporary and future marine forests under Representative Concentration Pathway Scenarios of increasing emissions (2.6, 4.5, 6.0, and 8.5). Our analyses indicate that cryophilic marine forests are already ubiquitous in the north, and thus cannot expand their range under climate change, resulting in an overall loss of habitat due to severe southern range contractions. The extent of marine forests within the Arctic basin, however, is predicted to remain largely stable under climate change with notable exceptions in some areas, particularly in the Canadian Archipelago. Succession may occur where cryophilic and cryotolerant species are extirpated at their southern range edge, resulting in ecosystem shifts towards temperate regimes at mid to high latitudes, though many aspects of these shifts, such as total biomass and depth range, remain to be field validated. Our results provide the first global synthesis of predicted changes to pan-Arctic coastal marine forest ecosystems under climate change and suggest ecosystem transitions are unavoidable now for some areas.publishedVersio
    • 

    corecore