32 research outputs found

    Adjustments in the range of angular motion during walking after amputation of the toes: a case report

    Get PDF
    The forefoot plays an important role in providing body support and propulsion during walking. We investigated the effect of forefoot dysfunction on the gait pattern of a young adult with partial bilateral amputation of the toes. We measured our participant’s gait kinematics during barefoot and shod overground walking and analysed time-distance and joint range of motion (RoM) parameters against a group of healthy adults. Forefoot dysfunction gait is improved by footwear and walking experience; however, this improvement was still remarkably different (exceeded 95% CI) when compared to healthy gait at matching walking speed. Compared to healthy gait, walking barefoot had a slower speed and a 30% reduction in ankle and knee joint RoM, but a larger hip RoM. Shod gait resulted in a remarkable increase in ankle RoM and walking speed compared to barefoot gait. These results are consistent with the important role of the forefoot (tarsals and metatarsophalangeal joints) and suggest that footwear can facilitate gait function following toe amputation

    Hydrolyzed Collagen Supplementation on Lower Body Stiffness in Recreational Triathletes

    Get PDF
    Background: Myotendinous stiffness is related to the collagen content of the muscle and tendon, and can be estimated during running by changes in vertical stiffness (kvert) and the resulting modifications of the spatiotemporal parameters (on-off ground asymmetry and landing-takeoff asymmetry). Supplementation with amino acids found in collagen, such as proline, glycine, and hydroxyl proline, combined with ascorbic acid, improve collagen synthesis and potentially result in improved mechanical strength and stiffness. Objectives: To determine if hydrolyzed collagen (HC) supplementation increases kvert and improves the spatiotemporal parameters during running in recreational triathletes. Methods: Nine active males (weight; 68.4 ± 5.7 kg, height; 171.8 ± 5.4 cm, age; 32.5 ± 4.1 years; Vo2max; 53.15 ± 2.19 mL/kg/min) were randomly distributed into a collagen group (CollG, n = 5) and a control group (CG, n = 4). Participants were supplemented for 4 weeks with 15g HC (CollG) or 15g placebo (CG; maltodextrin), 3 times per week. One hour after supplementation, the participants of both groups were asked to perform four repetitions of short sprints to further stimulate collagen synthesis. The ground reaction forces were recorded during running at 4.44 m s-1, 5.55 m.s-1, and 6.66 m.s-1 for assessment of kvert and the spatiotemporal step parameters. Results: Both groups increased kvert with speed (4.44 - 6.66 m s-1) from 24.8 ± 2.7 to 53.7 ± 16.5 N/m and from 25.1 to 49.8 N/m in the CollG and CG, respectively (P < 0.0001); however, there were no differences between groups before and after the supplementation period. As a consequence, the spatiotemporal parameters of running were also similar between groups. Conclusions: Four weeks of HC supplementation does not improve the bouncing mechanism of running in recreational triathletes

    Commentaries on viewpoint : physiology and fast marathons

    Get PDF
    Q2Q1N/

    Kinetics and mechanical work done to move the body centre of mass along a curve.

    No full text
    When running on a curve, the lower limbs interact with the ground to redirect the trajectory of the centre of mass of the body (CoM). The goal of this paper is to understand how the trajectory of the CoM and the work done to maintain its movements relative to the surroundings (Wcom) are modified as a function of running speed and radius of curvature. Eleven participants ran at different speeds on a straight line and on circular curves with a 6 m and 18 m curvature. The trajectory of the CoM and Wcom were calculated using force-platforms measuring the ground reaction forces and infrared cameras recording the movements of the pelvis. To follow a circular path, runners overcompensate the rotation of their trajectory during contact phases. The deviation from the circular path increases when the radius of curvature decreases and speed increases. Interestingly, an asymmetry between the inner and outer lower limbs emerges as speed increases. The method to evaluate Wcom on a straight-line was adapted using a referential that rotates at heel strike and remains fixed during the whole step cycle. In an 18 m radius curve and at low speeds on a 6 m radius, Wcom changes little compared to a straight-line run. Whereas at 6 m s-1 on a 6 m radius, Wcom increases by ~25%, due to an augmentation in the work to move the CoM laterally. Understanding these adaptations provides valuable insight for sports sciences, aiding in optimizing training and performance in sports with multidirectional movements

    Age-related changes in the neuromuscular control of forward and backward locomotion.

    Get PDF
    Previous studies found significant modification in spatiotemporal parameters of backward walking in healthy older adults, but the age-related changes in the neuromuscular control have been considered to a lesser extent. The present study compared the intersegmental coordination, muscle activity and corresponding modifications of spinal montoneuronal output during both forward and backward walking in young and older adults. Ten older and ten young adults walked forward and backward on a treadmill at different speeds. Gait kinematics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to young adults, the older ones used shorter steps, a more in-phase shank and foot motion, and the activity profiles of muscles innervated from the sacral segments were significantly wider in each walking condition. These findings highlight age-related changes in the neuromuscular control of both forward and backward walking. A striking feature of backward walking was the differential organization of the spinal output as compared to forward gait. In addition, the resulting spatiotemporal map patterns also characterized age-related changes of gait. Finally, modifications of the intersegmental coordination with aging were greater during backward walking. On the whole, the assessment of backward walk in addition to routine forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging

    Kinematic patterns while walking on a slope at different speeds

    No full text
    Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA. Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology. 2018;125(2):642-653

    Adjustments in the Range of Angular Motion during Walking after Amputation of the Toes: A Case Report

    No full text
    The forefoot plays an important role in providing body support and propulsion during walking. We investigated the effect of forefoot dysfunction on the gait pattern of a young adult with partial bilateral amputation of the toes. We measured our participant’s gait kinematics during barefoot and shod overground walking and analysed time-distance and joint range of motion (RoM) parameters against a group of healthy adults. Forefoot dysfunction gait is improved by footwear and walking experience; however, this improvement was still remarkably different (exceeded 95% CI) when compared to healthy gait at matching walking speed. Compared to healthy gait, walking barefoot had a slower speed and a 30% reduction in ankle and knee joint RoM, but a larger hip RoM. Shod gait resulted in a remarkable increase in ankle RoM and walking speed compared to barefoot gait. These results are consistent with the important role of the forefoot (tarsals and metatarsophalangeal joints) and suggest that footwear can facilitate gait function following toe amputation

    Alternative method for analysing <i>W</i><sub>com</sub>.

    No full text
    When running on a curve, the lower limbs interact with the ground to redirect the trajectory of the centre of mass of the body (CoM). The goal of this paper is to understand how the trajectory of the CoM and the work done to maintain its movements relative to the surroundings (Wcom) are modified as a function of running speed and radius of curvature. Eleven participants ran at different speeds on a straight line and on circular curves with a 6 m and 18 m curvature. The trajectory of the CoM and Wcom were calculated using force-platforms measuring the ground reaction forces and infrared cameras recording the movements of the pelvis. To follow a circular path, runners overcompensate the rotation of their trajectory during contact phases. The deviation from the circular path increases when the radius of curvature decreases and speed increases. Interestingly, an asymmetry between the inner and outer lower limbs emerges as speed increases. The method to evaluate Wcom on a straight-line was adapted using a referential that rotates at heel strike and remains fixed during the whole step cycle. In an 18 m radius curve and at low speeds on a 6 m radius, Wcom changes little compared to a straight-line run. Whereas at 6 m s-1 on a 6 m radius, Wcom increases by ~25%, due to an augmentation in the work to move the CoM laterally. Understanding these adaptations provides valuable insight for sports sciences, aiding in optimizing training and performance in sports with multidirectional movements.</div

    <i>PL</i><sub>c</sub> oscillation around the circular fit and angle deviations.

    No full text
    The left panels illustrate the typical traces of the oscillation of PLc over one stride around the circular fit R (black line), for the same subject as in Fig 1. In each panel, the circular path is rotated so that the cord of the arch defined by the first and last point of the stride is horizontal. The vertical scale is amplified to accentuate the oscillations around the curve. The right panels represent the temporal changes of the angles δ (continuous line) and θ (interrupted line) over the strides presented in the left panel. Colours are the same as in Fig 1.</p

    %Recovery and work done to sustain the centre of mass movements.

    No full text
    %Recovery and work done on the inner (red) and outer (blue) limb for both radii of curvature as a function of speed. The upper panels present energy recovered through the transduction between EX, EY and Ez. The four panels below present the mass-specific positive work normalised per unit distance. From top to bottom row 2 presents the work necessary to sustain the movements of the CoM respectively in the vertical direction (Wz), row 3: Along the X-axis (WX) and row 4: Along the Y-axis (WY). The bottom panel represents the work done to sustain the movements of the CoM relative to the surroundings. The interrupted lines represent spline fits for the left foot during SL. Other indications are as in Fig 4.</p
    corecore