85 research outputs found

    Improving the quality of set yoghurt using milk fat globule membrane fragments

    Get PDF
    Lacprodan PL20, a dairy ingredient that is rich in protein and polar lipids, was added into set yoghurts produced from nonhomogenized raw milk. The set yoghurts were prepared using concentrations of 2%, 4%, and 6% Lacprodan PL20, while the control sample was only supplemented with skim milk powder. The effect of Lacprodan PL20 concentrations on the physical and chemical properties, rheology, and microstructure of set yoghurt was thoroughly investigated to determine some likely improvement or changes in quality. Consequently, Lacprodan PL20 showed a gradual improvement in the set yoghurt nutritive values, water holding capacity, and apparent viscosity. The results indicated that the firmness of set yoghurt was altered which steadily improved the gel strength, especially at 4% and 6% concentrations. The fermentation process was slightly delayed at 4% and 6% concentrations and pH values were raised as Lacprodan PL20 concentration increased. The microstructures of the set yoghurts produced with Lacprodan PL20, as examined by scanning electron microscopy, revealed compacted structures with fewer and smaller holes in the gel matrices. Also, a slight color change was observed in set yoghurt using a colorimeter. These results vividly showed that Lacprodan PL20, an enriched milk fat globule membrane fragment, has the potential to improve set yoghurt quality by reducing some defects associated with set yoghurt, such as low gel strength, low dry solids, and the likes

    Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates

    Get PDF
    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF
    • 

    corecore