503 research outputs found

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure

    Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe

    Get PDF
    Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. 90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that manage-ment practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Floral turnover and climate drive seasonal bee diversity along a tropical elevation gradient

    Get PDF
    The contribution of seasonality in species communities to elevational diversity of tropical insects remains poorly understood. We here assessed seasonal patterns and drivers of bee diversity in the Eastern Afromontane Biodiversity Hotspot, Kenya, to understand the contribution of seasonality to elevational biodiversity patterns. Bee species and plant species visited by bees were recorded on 50 study plots in regrowth vegetation across four major seasons along two elevation gradients from 525 to 2530 m above sea level. Bees were sampled by transect walks using sweep nets and aspirators. We examined how local species richness (α-diversity) and seasonal changes in local species communities (β-diversity) contribute to species richness across seasons (γ-diversity) along elevation gradients. Using a multimodel inference framework, we identified the contribution of climate and floral seasonality to elevational patterns in bee diversity. We found that both α- and γ-diversity decreased with elevation. Seasonal β-diversity decreased with elevation and the high turnover of species across seasons contributed to a considerably higher γ- than α-diversity on study plots. A combination of seasonality in climate and the seasonal turnover of floral resources best explained the seasonality in bee species communities (seasonal β-diversity). We, therefore, conclude that, despite the more stable, and favorable climatic conditions in the tropics (in comparison to temperate regions), climatic seasonality and its influence on bees’ floral resources largely determined seasonal patterns of bee species diversity along elevation gradients on tropical mountains.JRS Biodiversity Foundation (grant number: 60610), UK’s Foreign, Commonwealth & Development Office (FCDO), the Swedish International Development Cooperation Agency (Sida), the Swiss Agency for Development and Cooperation (SDC), the Federal Democratic Republic of Ethiopia, and the Government of the Republic of Kenya.https://onlinelibrary.wiley.com/r/ecs2am2023Zoology and Entomolog

    Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield

    Get PDF
    How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.This study was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 ASSIST–Achieving Sustainable Agricultural Systems www.assist.ceh.ac.uk. ASSIST is an initiative jointly supported by NERC and the Biotechnology and Biological Sciences Research Council (BBSRC). Additional funding for field studies was from the Wessex Biodiversity Ecosystem Services Sustainability (NE/J014680/1) project within the NERC BESS programme. Other data sets were generated from research funded by: (a) the Insect Pollinators Initiative programme funded by BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Living with Environmental Change Partnership; (b) Defra project BD5005: Provision of Ecosystem services in the ES scheme; and (c) Irish Government under the National Development Plan 2007–2013 administered by the Irish EPA
    • …
    corecore