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Abstract

The contribution of seasonality in species communities to elevational diversity

of tropical insects remains poorly understood. We here assessed seasonal pat-

terns and drivers of bee diversity in the Eastern Afromontane Biodiversity

Hotspot, Kenya, to understand the contribution of seasonality to elevational

biodiversity patterns. Bee species and plant species visited by bees were

recorded on 50 study plots in regrowth vegetation across four major seasons

along two elevation gradients from 525 to 2530 m above sea level. Bees were

sampled by transect walks using sweep nets and aspirators. We examined how

local species richness (α-diversity) and seasonal changes in local species com-

munities (β-diversity) contribute to species richness across seasons (γ-diversity)
along elevation gradients. Using a multimodel inference framework, we identi-

fied the contribution of climate and floral seasonality to elevational patterns in

bee diversity. We found that both α- and γ-diversity decreased with elevation.

Seasonal β-diversity decreased with elevation and the high turnover of species

across seasons contributed to a considerably higher γ- than α-diversity on

study plots. A combination of seasonality in climate and the seasonal turnover

of floral resources best explained the seasonality in bee species communities

(seasonal β-diversity). We, therefore, conclude that, despite the more stable,

and favorable climatic conditions in the tropics (in comparison to temperate

regions), climatic seasonality and its influence on bees’ floral resources largely
determined seasonal patterns of bee species diversity along elevation gradients

on tropical mountains.
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INTRODUCTION

Conceptualizing the different processes that determine
the distribution of species diversity along elevation gradi-
ents dates back two centuries ago (Von Humboldt, 1849),
with a recent expansion of the field to new geographic
areas, to less well-studied taxonomic groups of organ-
isms, and to broader phylogenetic coverage of species
communities (Cottenie, 2005; Kraft et al., 2011; Mori
et al., 2013; Peters et al., 2016; Tang et al., 2012; Tello
et al., 2015). The change in climate is a pervasive feature
of elevation gradients, which ultimately determines many
ecosystem properties from primary productivity to the
diversity of species communities (Peters et al., 2019).
Decreasing temperatures and climate-mediated variation
in food resources have been identified as drivers of
elevational diversity gradients for several insect taxa such
as bees and cavity-nesting hymenopterans (Classen
et al., 2015; Plowman et al., 2017), dung beetles (Gebert
et al., 2019), and butterflies and moths (Maicher
et al., 2018). One of the little-understood aspects of
mountain ecology is how climatic seasonality, here
defined as the changes of climatic conditions within the
year, contributes to trends of species diversity along
elevational gradients (Körner, 2007). This is particularly
true for tropical mountains, which host the most extreme
gradients in climate and species diversity and on which
the consequences of seasonality remain little studied
(Körner, 2007).

Seasonality in temperature and precipitation has a
significant impact on the phenology of plants and the
physiology of animals at high and low latitudes
(Thuiller, 2007). At high latitudes, low temperatures are
the most limiting factor for species developmental pro-
cesses and activity, leading to an often pronounced cli-
mate seasonality and phenology (Collins et al., 2013;
Qian et al., 2013). In contrast, seasonal patterns in the
tropics are often more subtle and strongly related to
changes in precipitation over the year (Maicher
et al., 2018). Tropical seasonality is often considered less
extreme as the climatic conditions in most areas do not
generally limit ectothermic metabolism and the net pri-
mary productivity of ecosystems (e.g., frost). However,
due to the narrower climatic niches of tropical species
(Janzen, 1967), relatively small changes in climate may
lead to significant changes in the activity patterns of spe-
cies. This is true for most arthropods with short life cycles
(Maicher et al., 2018; Schmitt et al., 2021), for exam-
ple, bees.

Determining the mechanisms shaping seasonal distri-
bution of organisms on tropical elevation gradients has
been a daunting task to achieve due to the challenging

nature of the terrain and rigorous sampling effort
required. Therefore, focusing on specific taxa with known
contributions to ecosystem function (e.g., bees) becomes
very important. Bees are important as they contribute sig-
nificantly to the provision of pollination services
(Blüthgen et al., 2007; Potts et al., 2003; Steffan-Dewenter
& Tscharntke, 2001). They are sensitive to changes in cli-
mate and to available flowering plant resources (Classen
et al., 2015) and show clear patterns of abundance and
diversity that deviate from other organisms. Therefore,
determining the mechanisms shaping any observed sea-
sonal patterns in bee assemblages would serve as the
baseline to understand seasonal dynamics and the under-
lying mechanisms shaping patterns in other taxa.

Along elevation gradients, mean annual temperature
(MAT) decreases, while precipitation shows variable
changes with elevations (Körner, 2007). This fluctuation
in climate may vary with seasons and would exert an
influence on species composition. On high latitude
mountains, seasonal temperature changes cause mono-
tonic declines in the season length in plant and animal
communities along the elevation gradient, while tropical
mountains in humid areas often show reduced seasonal-
ity due to the generally high and more stable tempera-
tures (Körner, 2007). On tropical mountains with a dry
base, seasonality is often higher in the lowlands as high
temperatures and low rainfall may cause temporal aridity
(Körner, 2007) or because temperatures may even tempo-
rally exceed thermal thresholds of organisms (Araújo
et al., 2013). Seasonal changes in climate may directly or
indirectly influence species communities. In case of vari-
ation in the climatic niches of local species, a high sea-
sonality in climate may cause a seasonal turnover
(Williams et al., 2017) or seasonal decreases of species
richness in communities. Climatic factors also impose
physiological constraints on organisms resulting in them
occupying attenuated ranges (Archibald et al., 2013;
Janzen, 1967), along elevational gradients.

In addition, climatic changes may lead to a turnover
in the type and quantity of food resources available to
bees. Seasonal variability of food resources plays a pivotal
role in the assembly patterns of corresponding dependent
species (Gonz�alez et al., 2009). High plant species diver-
sity can provide diverse niche habitats necessary for the
coexistence of diverse bee assemblages (Potts et al., 2003)
and control of microclimate (Knapp et al., 2002;
Schnitzer, 2005). Seasonal shifts in the type and quantity
of food resources may induce a consequent shift in the
species composition of consumer communities, especially
for organisms showing some degree of specialization on
specific food resources (Tilman et al., 1997). Therefore,
seasonality in climate may influence the total number of
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species living in an ecosystem over the year (Williams
et al., 2017).

In this study, we examined patterns and drivers of
seasonality in bee assemblages and the contribution of
seasonality to the total number of species observed over
an entire year along a tropical elevation gradient in the
Eastern Afromontane Biodiversity Hotspot (EABH) in
Kenya, East Africa. In temperate climate zones, bees
show clear phenologies in activity patterns (Leong
et al., 2016). For tropical bee communities, climatic gradi-
ents such as the changes of temperature and precipitation
along elevation gradients have been reported as drivers of
bee diversity on mountains (Classen et al., 2015). Studies
on β-diversity have largely examined variation in space
(Kraft et al., 2011; Samnegård et al., 2015; Tello
et al., 2015). However, there is lack of empirical data
quantifying patterns and drivers of seasonal changes in
species composition (see Maicher et al., 2018, 2020) and
its contribution to the total number of species in ecosys-
tems. While some bee species are known to be generalists
regarding the plant species they visit for collecting pollen
and nectar (Bartomeus et al., 2011), some show a strong
dependence on specific host plants (Haider et al., 2014;
Larkin et al., 2008; Müller & Kuhlmann, 2008) making
some degree of seasonal tracking of floral resources likely
(Wood et al., 2018). Nonetheless, it remains unknown to
what degree seasonal trends in bee communities along
tropical elevations correspond to changes in floral
resources or climate.

In this study, we aimed at understanding the season-
ality in bee communities along East African elevation
gradients. We, first, reveal changes in seasonal β-diversity
of bees along elevation gradients and quantified its con-
tribution to the total number of bee species observed over
the year (γ-diversity). Second, we analyze the causes of
seasonal β-diversity in bee communities, by disentangling
the effects of changes in climate and in the composition
of flowering plant communities across seasons.

METHODS

Study area and time of study

Our study was carried out from July 2019 to April 2020
along two elevation gradients in Kenya, one elevation
gradient of 525–1865 m above sea level (asl) in the Taita
Hills region (38�100 to 39�030E, �3�150 to �4�0´S) and
one along a 1470–2530 m asl in Murang’a County, the
central region of Kenya (0�340 to 1�5´S, 36�430 to
37�270E; Figure 1). Both elevation gradients are situated
within the Eastern Afromontane Biodiversity Hotspot
(EABH). The lowland in this region has a subtropical

climate comprising arid and semiarid conditions, while
the highlands are categorized into montane forests.
Farming and grazing activities are intermixed at some
distances into the forest areas forming a multiplex of
diminutive variegations, with each site comprising of a
set of specific multifarious anthropogenic activities. The
landscape matrix along the elevation gradient consists
of savannah, shrubland, indigenous bushlands, pasture,
and human settlement with subsistence agricultural
activities with crops such as coffee, mangoes, cassava,
tomatoes, banana, maize, pepper (Capsicum anum),
cabbage, spinach, cucumber (Cucumis sativus), and
beans. Subsistence farms are accompanied by large-scale
agricultural plantations such as tea (Camelia sinensis)
and pineapple plantations in Murang’a and sisal (Agave
sisalana) in Taita.

Mean annual precipitation increases and MAT
decreases with elevation (Appendix S1: Figure S1) such
that the climate becomes more humid and allows the
growth of premontane and montane forests on mountain
tops. Rainfall shows a bimodal seasonal pattern with a
short-rainy period between November and December,
followed by a dry period of 2–3 months, while prolonged
heavy rainfalls typify the periods from March to May
ensued with a long-dry period of 5 months. The mean
annual rainfall ranges from approximately 250 to
2000 mm (Orodho, 2006) from low 525 m to high 2530 m
asl elevations, with mists coverage on the higher eleva-
tions in most part of the year (Pellikka et al., 2009) even
in the absence of rain. Across the entire region, tempera-
ture ranges from approximately 17.5 to 19�C and approxi-
mately 29 to 31�C for mean annual minimum and mean
annual maximum temperatures, respectively
(Gebrechorkos et al., 2019), and varies with seasonality
in temperature and precipitation. Precipitation seasonal-
ity is mostly stable across a larger part of the lowlands for
up to about 1500 m before steadily decreasing toward the
higher elevations. Meanwhile, seasonality in temperature
increases sharply to about 800 m in the low elevations
and declines nonlinearly along the higher elevations
(Appendix S1: Figure S1).

We established 25 study plots of 100 � 100 m along
each elevation gradient, making up a total of 50 study
plots (Figure 1). Study plots were always positioned in
regrowth vegetation, ensuring a minimum geographic
distance of 2.3 km from each other (taking into consider-
ation the average foraging range of most tropical bee spe-
cies, e.g., Wikelski et al., 2010) and following
approximate elevation increments of about 100–250 m
between neighboring plots. A large and increasing por-
tion of land area in the tropics can be classified as anthro-
pogenic influenced “regrowth vegetation.” This
vegetation was established by subsistence farming and
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grazing activities replacing the natural vegetation and is
characterized by natural herbs and woody plants regrow-
ing intermixed with single or few large trees (Appendix
S1: Figure S2). It has been demonstrated that regrowth
vegetation can contribute to overall landscape heteroge-
neity, structural complexity, and the conservation and
restoration of rare species (Tscharntke et al., 2011).

Bee sampling

Bee sampling was conducted four times intermittently
between July 2019 and April 2020, corresponding to the
four major seasons described above (November and
December: short-rainy and warm season, March–April:
long-rainy and warm season, July: long-dry and cold sea-
son, September–October: short-dry and cold season).
Bees were collected by standardized sweep netting and
suction with a Prokopack aspirator (Model 1419, John
Whock, Gainesville, FL, USA).

Sampling was congruous and standardized for each
site. Each plot was visited once per season by three expe-
rienced observers (always the same) for 2 h during the
peak activity time of bees (between 9:00 AM and
5:00 PM). We ensured equal sampling probabilities by

exclusively conducting sampling during rain-free periods
without or with a shallow wind. During sweep netting, a
slow, gentle, and parallel movement around the entire
plot was conducted, sampling all bees during flight on
plant flowers. For taller plants that were inaccessible or
sweep netting was not possible, we collected bees from
flowers using an Improved Prokopack aspirator (Model
1419, John Whock, Gainesville, FL, USA). This tool made
it possible to collect bees from trees up to �4 m in height.
All sampled bees were frozen directly in the field by
transferring them into a �18�C motorable cooler (Waeco
Coolfreeze CF-35, Dometic GmbH, Emsdetten, Germany)
before onward transfer to a �80�C freezer in the labora-
tory. The African subspecies of the Western honeybee
(Apis mellifera L.) were not included in the analysis
because we were interested in the diversity of wild bees
(e.g., Powney et al., 2019), which are known to enhance
the ecosystem services of pollination independently of
honeybees (Garibaldi et al., 2013) and also because bee-
keepers introduced most honeybee colonies in the region.
Identification of the specimens was done using a Zeiss
microscope affixed with an Axiocam 105 color camera
(Carl Zeiss microscope, Jena, Germany). Bees were iden-
tified to the genus level following Michener (2007) and
Eardley et al. (2010). Specimens were sorted to either
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F I GURE 1 Map of the study sites. This map shows the geographic position of study plots (orange dots) along elevation gradients in

Taita Hills (a) and Murang’a (b) in Kenya (inserted figures). Each gradient consisted of 25 study plots. Contour lines in the background show

elevation levels
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species or morphospecies level with the help of an expert
from the National Museums of Kenya.

Assessment of the diversity of bee-visited plants

In order to estimate the available floral resource diversity
for bees, we counted on each study plot during each sam-
pling period the number of flowering plant species visited
by bees. During the 2-h sweep netting walks (for collecting
bees), all flowering plant species on which a bee was touch-
ing the reproductive structures (anthers or stigma) were
recorded. All visited plants were photographed using a stan-
dard digital camera while in the field, and samples of each
species were collected to establish a herbarium. All plant
samples were later identified to species level by an experi-
enced plant taxonomist at the National Museums of Kenya.

Climatic variables

We extracted four different climatic variables from the
Climatologies at High-Resolution for the Earth’s Land
Surface Area (CHELSA) database (Karger et al., 2017),
particularly the bioclimatic variables supplied in the BIO-
CLIM data. This data set provides climate data at a reso-
lution of 3000 (�1 km2). We derived the following climate
variables: BIO1: mean annual air temperature (MAT),
BIO4: seasonality of temperature, which considers
changes in temperature in a year (Tseasonality); BIO12:
mean annual precipitation (MAP); and BIO15: seasonal-
ity in precipitation, which is the fluctuation of precipita-
tion in a normal year (Pseasonality). For a complete
description of parameters used, see Appendix S1:
Table S1. This database has been widely used in recent
ecological studies (e.g., Boyer et al., 2020; Brown
et al., 2018; Ivajnšič & Devetak, 2020; Marcondes
et al., 2020; Pironon et al., 2019; Powell et al., 2018) and
is particularly robust in providing more realistic precipi-
tation data for mountainous areas in comparison with
other databases (Karger et al., 2017).

Statistical analyses

Statistical analyses were conducted within the R statistics
platform version 4.0.3 (RStudio Team, 2021) using the
following packages: “vegan,” “mgcv,” “MuMIn,” and
“corrplot.”

To assess the cumulative number of species over the
whole study time and for different seasons, we con-
structed species accumulation curves using the “vegan”
package to assess the completeness of sampling. In order

to test whether changes to a more humid and warmer cli-
mate is associated with contractions or expansions of
elevational ranges of species, we calculated, for the subset
of species which were present in both wet–warm and
dry–cold seasons, the average differences in species
elevational ranges. Using a one-sample t test, we tested
whether average differences in elevational ranges differed
from 0.

To determine trends in species diversity with eleva-
tion and to assess the effects of seasonality on species
diversity in different elevations, we used additive par-
titioning of species diversity (Lande, 1996). Alpha diver-
sity (α) was here defined as the mean species richness per
plot observed across the four seasonal samplings, and
gamma diversity (γ) was defined as the cumulative spe-
cies richness per study plot across all seasons, with beta
diversity (β), in general, describing the change in species
composition per plot per season. We here used several
definitions of β-diversity reported in the literature:

1. Additive β-diversity, given as βADD = γ � ᾱ.
2. Multiplicative β-diversity given as βw = γ/ᾱ (Whitta-

ker, 1960, 1972).
3. Beta partitioning, given as βp = 1 � ᾱ/γ (e.g., Kraft

et al., 2011)
4. Additive beta deviation (βd), controlling for differ-

ences in γ-diversity (Kraft et al., 2011).

To calculate the βd, we used the null model approach
developed by Kraft et al. (2011). In this approach, βADD
was first calculated by repeatedly and randomly shuffling
individuals among seasons while preserving γ-diversity,
the relative abundance of species at the location, and the
number of individuals per seasonal sample. In a second
step, this null model estimate was subtracted from the
observed additive β-diversity to generate the additive
β-deviation (βd), a measure of additive β-diversity, which
is independent of the variation in γ-diversity. The null
model concept of Raup and Crick (1979) is the model of
choice in correcting for species pool effects (α- and
γ-dependencies) and improving interpretations of β-devi-
ations from null expectations (e.g., Chase et al., 2011;
Kraft et al., 2011).

To obtain a measure of the diversity of plant species
visited by bees on-site, we calculated the alpha (Fα),
gamma (Fγ), and subsets of β-diversity measures, that is,
β-multiplicative (Fβw), β-additive (FβADD), and β-par-
titioning (Fβp) diversity as described for the bees above.

To assess whether changes in β-diversity of bees with
elevation are mainly due to a loss of species or due to the
turnover of species, we calculated the Jaccard dissimilar-
ity (βj) and its turnover βj-turnover and nestedness (βj-
nestedness) components following Baselga (2012).
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We used generalized additive models (GAM) to exam-
ine the relationships between diversity measures (α, γ,
βw, βADD, βp, βd, βj, βj-turnover, and βj-nestedness) with eleva-
tion. GAM uses a nonparametric regression approach
using smoothing (splines) functions to pervade simple
and complex nonlinear and linear relationships
(Wood, 2006). GAMs were computed using the “gam”
function in the mgcv package and data family set to Gauss-
ian type with an “identity” link function. The basis dimen-
sions were set to five (k = 5), circumventing the effects of
trend over-parameterization (Peters et al., 2016).

After finding patterns in bee diversity with elevation,
we further assessed which environmental factor(s) most
likely determined changes in α-, β-, and γ-diversity and
analyzed the influence of climatic (MAT, MAP,
Tseasonality, and Pseasonality) and flower diversity (Fα, Fβ)
parameters on bee diversity (α, γ, and β) using ordinary
linear models and model selection based on the Akaike’s
information criterion (AIC). Since our sample size was
small compared to the estimated parameters (n/K < 40),
we used the second-order AICc rather than the original
AIC (Burnham & Anderson, 2002) to derive the support
for individual models. All explanatory variables and depen-
dent variables were standardized by z-transformation, all-
owing a direct comparison of effect strengths among

explanatory variables. We constructed a full model for each
response variable, including both climate and plant diver-
sity variables and calculated AICc values for these and all
nested models. We compared all models showing a ΔAICc

<2 to the best-selected model (Appendix S1: Table S2).

RESULTS

Species diversity of bees and bee-visited
plants

We recorded 3137 individuals of wild bees belonging to
185 (morpho)species (Appendix S1: Table S3.1) from five
bee families. The family Apidae was the most abundant
and most species-rich (43.1% of all individuals, 17 genera,
84 species), followed by the family Halictidae (40% of
individuals, nine genera, 55 species), Megachilidae
(14.7% of individuals, six genera, 40 species), Colletidae
(2% of individuals, two genera, five species), and
Andrenidae (only five individuals from one genus and
one species). The cumulative number of species increased
with the number of sampling periods (Figure 2a). The
cumulative number of sampled species was lower in the
dry and cold (75 and 66 species) than in the wet and

F I GURE 2 Species accumulation curves across all seasons (a) and for each season separately (b–e). (a) The mean and 95% confidence

interval of the cumulative number of species for a given number of samples were calculated by 200 random shuffling of samples from all

four seasons and for each season (i.e., cold and dry: b,c; and warm and wet: d,e). The lines in (b–e) show the cumulative number of species

separately for each season, following the order in which study plots were visited
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warm (129 and 136 species) seasons (Figures 2a–e). Com-
paring the elevation ranges of bee species in the wet–warm
and the cold–dry seasons revealed that the elevational
range was on average 312 m (one-sample t test, p < 0.01)
larger (i.e., elevational range expansion takes place) in the
former than in the latter (Appendix S1: Figure S3).

We recorded 312 plant species, 173 genera, and 55
families visited by bees along the elevational gradients.
The five most species-rich families on which we recorded
bees feeding on were the Asteraceae (27 genera and 48
species), Fabaceae (21 genera and 41 species), Lamiaceae
(16 genera and 32 species), Malvaceae (five genera and 17
species), and Poaceae (11 genera and 12 species) (Appen-
dix S1: Table S3.1).

Effects of elevation on species diversity

The alpha (α) and gamma (γ) diversity of bees declined
linearly and significantly with elevation (Figure 3a,b)
(α-diversity: n = 50, estimated degrees of freedom [edf] of
the smooth term = 1, F = 5.4, p < 0.05, γ-diversity,
n = 50, edf = 1, F = 13.4, p < 0.001). However, there was
a very high variation in observed α- and γ-diversity such
that the explained deviance (ED) was rather low (α-diver-
sity: ED = 10.2%, γ-diversity: ED = 21.8%). The seasonal
bee diversity (β-diversity) declined significantly with ele-
vation irrespective of the type of β-diversity measured
(Figure 3c; GAMs based on a sample size of n = 50: βADD:
ED = 27.6%, edf = 1, F = 18.31, p < 0.001; βw:
ED = 26.3%, edf = 1.88, F = 6.85, p = 0.01; βp:
ED = 27.2%, edf = 1.82, F = 7.51, p = 0.01; βj: n = 50,
ED = 27.2%, edf = 1.8, F = 7.4, p = 0.01). Even after
accounting for the variation in γ-diversity (Kraft

et al., 2011), seasonal β-diversity decreased with elevation
(βd: n = 50, ED = 16.4%, edf = 1, F = 9.4, p < 0.01).
Decomposing βj into turnover and nestedness revealed
that the seasonal turnover in bee communities decreased
with elevation, while the nestedness increased with ele-
vation (Figure 4; turnover: n = 48, ED = 28.2%,
edf = 1.5, F = 8.4, p < 0.001; nestedness: n = 48,
ED = 16.1%, edf = 1, F = 8.8, p < 0.01). Generally, the
seasonal turnover of species was far more important for
the seasonality in bee communities than the nestedness;
that is, the bee species present on a study plot in a certain
season were not a subset of the species during the most
diverse season but communities rather composed of dif-
ferent species.

Determinants of species diversity

Both climatic variables and floral resources significantly
affected bee species diversity, but the type and magnitude
of effects differed between response variables as shown in
Figure 5. Despite the strong residual variation in bee
diversity patterns (α-, β-, and γ-diversity) along the eleva-
tion gradients (Figure 3a–c), the variation explained by a
combination of climate and plant diversity variables was
rather high (Figure 5).

Bee α-diversity was strongly and significantly
predicted by both MAT and flower alpha diversity (Fα)
with α-diversity of bees increasing with both MAT and
the α-diversity of bee-visited plants (Appendix S1:
Table S2). γ-diversity of bees increased with MAT, with
the α-diversity of bee-visited plants and was higher in
study plots showing pronounced seasonality in climate
(higher levels of Tseasonality and Pseasonality) (Figure 5).
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γ-diversity per study plots, respectively. Dots in (c) depict measures of the additive β-deviation per study plot
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F I GURE 5 Summary of best fit models. This indicates the significant drivers (predictors) of bee diversity along the elevation gradients

for different diversity measures. The “boldness” of each link denotes the relative strength of an association, while the colors blue and red

denote positive and negative interacting effects, respectively. The relative amount of explained variance or coefficient of variation (R 2) is

given for each response variable. The correlation matrix (correlogram) on the right underscores the direction and strength in the relationship

between explanatory variables
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The seasonal β-diversity of bees increased with the
seasonality in climate (Pseasonality) and the β-diversity of
floral resources, indicating that β-diversity in bee com-
munities was higher on study plots showing a strong sea-
sonality in both climate and plant community
composition. Concerning the turnover and nestedness
components of β-diversity, we found that species turn-
over increased positively and linearly with the β-diversity
of plant communities (Fβm), and it decreased with
increasing rainfall (MAP). In contrast, the nestedness
component of β-diversity increased significantly with
MAP. For most response variables, the most relevant
drivers of diversity measures were consistent among com-
peting models (ΔAICc < 2), but there was a high incon-
sistency in the explanatory variables for nestedness
among the competing models (Appendix S1: Table S2).

DISCUSSION

Previous studies on β-diversity along elevation gradients
have focused on spatial aspects (see Kraft et al., 2011; Mori
et al., 2013; Tang et al., 2012; Tello et al., 2015). Here, we
calculated several β-diversity statistics, including a null
model approach suggested by Kraft et al. (2011) to analyze
the seasonal turnover of bees and plants and its contribu-
tion to the total bee diversity across the full year. Our study
revealed pronounced seasonality in wild bee assemblages,
which significantly contributed to patterns of elevational
diversity. Seasonal changes in bee assemblages were
highest in the lowlands and declined with elevation and
were driven both by seasonal shifts in climate and by the
turnover of the flowering plant communities.

We found that seasonal changes in bee communities
strongly contributed to γ-diversity. The total number of
bee species found on study plots across all seasons was
�2.5 to �3.5 times higher than the average number of
species found within single seasons. Floral resource avail-
ability and climate seasonality are known to affect bee
assemblage patterns, with higher diversity and turnover
in species composition recorded in wet than in dry sea-
sons (Escobedo-Kenefic et al., 2020; Samnegård
et al., 2015). The contribution of seasonality effects (i.e.,
seasonal β-diversity) to γ-diversity was not homogeneous
but decreased with elevation. While seasonal β-diversity
in insect communities along tropical elevation gradients
remains little studied, a number of studies on spatial
β-diversity also point to a general decrease with elevation
(e.g., Plowman et al., 2020; Tang et al., 2012). The consis-
tently high contribution of β-diversity to γ-diversity and
the decrease of β-diversity with elevation points to a high
importance of seasonality for the establishment of diver-
sity gradients of bees on tropical mountains.

Furthermore, the severe dryness in vegetation at the
lower arid elevations throughout the long-dry and short-
rainy seasons (Appendix S1: Figure S2), left only a few spe-
cies to thrive in these severe conditions and across a large
elevation range. This was true for members of the genera
Seladonia (Halictus), Braunsapis, and Patellapis, where spe-
cies exhibited a shift to areas with suitable habitats while
gaining in overall distributional range. This severe dry con-
dition also led to alternations in elevational range occu-
pancy of some species (e.g., Amegilla spp. and Megachile
spp.) into the higher elevations (e.g., Appendix S1:
Table S3.1), while other low elevation species (e.g., Lip-
otriches spp.) only reemerged during the short-dry and long-
rainy periods when foraging resources became available.

The seasonal β-diversity of bees declined significantly
with elevation irrespective of the type of β-diversity mea-
sure used. Seasonal β-diversity still decreased with eleva-
tion even after controlling for γ-diversity (Kraft
et al., 2011). Our result reveals that the change in β-diver-
sity with elevation was driven by a seasonal shift in floral
resources and seasonality in precipitation, which both
positively influenced β-diversity of bees. This result high-
lights the impact of floral resource heterogeneity across
seasons, suggesting associations of bee species with spe-
cific flowering plant species (Muller, 1996). This temporal
turnover in bee activity reduces interspecific competition
for floral resources (Michener, 1979; Velthuis, 1992).
Apart from the change in floral resources, precipitation
seasonality significantly explained seasonal β-diversity of
bees. This suggests that the activities and phenology of
bee species in the region are restricted to certain climatic
conditions occurring in parts of the year, whereas some
bees restrict their activity to the colder and drier parts of
the year (Straka et al., 2014) and the activity of others
peaks in the warm and wetter periods (Willmer &
Stone, 2004), thus contributing to the high seasonality
(β-diversity) in bee assemblage patterns.

The α-diversity significantly declined with elevation
and could be well explained by an interplay of the
α-diversity of floral resources and MAT, which both had
a positive effect (R2 = 73%). This finding corroborates
previous studies on bees and cavity-nesting hymenop-
terans, which found close associations of species richness
with temperature and the availability of floral resources
(Abrahamczyk et al., 2011; Classen et al., 2015; Ebeling
et al., 2008; Escobedo-Kenefic et al., 2020; Fisher
et al., 2017; Mayr et al., 2020; Potts et al., 2003). The posi-
tive effect of MAT on species richness can be explained
by higher metabolic rates of ectothermic organisms under
high temperature, fostering net energy intake, and popu-
lation growth (Brown et al., 2004; Classen et al., 2015;
Savage et al., 2004). Furthermore, higher temperatures
are associated with higher rates of molecular evolution
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and diversification (Allen et al., 2006; Eiserhardt
et al., 2013; Lin et al., 2019) producing positive relation-
ships between temperature and species richness.

When partitioning seasonal β-diversity into the com-
ponents of species turnover and nestedness, we found the
former to be generally more important than the latter
across the elevation gradient. Furthermore, while species
turnover decreased with elevation, nestedness increased.
In high elevation areas, with high levels of MAP and low
temperatures, bee communities in species-poor seasons
were to a larger degree subsets of those in species-rich
seasons, in contrast, under the drier and hotter condi-
tions in the lowlands, bee species more strongly shifted
across different seasons, revealing divergent mechanisms
of seasonal community assembly from low to high eleva-
tions (Walther, 2010). The effects of abiotic stressors such
as low temperatures coupled with wet soils, which
become increasingly prominent at higher elevations
(Körner, 2007; Lundquist & Loheide, 2011; Nogués-Bravo
et al., 2008; Rahbek, 1995), constrain the activity of local
species to few seasons with no replacement by other spe-
cies in the climatically harsh parts of the year (Colwell
et al., 2008). This could be an explanation for the increas-
ing contribution of the nestedness component of β-diver-
sity in bee species assemblages at higher elevation.

Our study had some caveats. First, while it revealed
the importance of climatic and floral resource seasonality
on bee species diversity along tropical elevation gradi-
ents, it allowed only the assessment of seasonal trends
over 1 year. As seasonal trends may have an interannual
variation, a study on seasonal trends spanning multiple
years could reveal a more detailed picture of the season-
ality in bee communities on African mountains. Second,
on the studied elevation gradient, MAT and MAP and
their seasonality were rather strongly correlated, which
could cause problems in causal inference. We handled
this by reporting the degree of correlation for these and
all other explanatory variables and by using multimodel
inference to derive the support for explanatory variables.
Strong correlation among explanatory variables would
here lead to multiple alternative competitive models,
which we documented in Appendix S1: Table S2). Com-
parisons among competitive models revealed, however,
consistent support for most effects and diversity measures
except for the nestedness component of β-diversity, for
which model uncertainty was high.

CONCLUSION

We showed that climatic seasonality and its influence on
bees’ floral resources largely determined seasonality pat-
terns of bee species diversity along elevation gradients on

tropical mountains. Our results further revealed that a
potentially reduced seasonal variation in rainfall and
more homogeneous plant communities in the course of
global change could lead to a loss of bee diversity on
mountains in East Africa. As important as hotspots and
mountainous areas are in harboring endemic species,
understanding the impact and consequences of climatic
change in shaping the vegetation structure of this region
would be crucial for the conservation of bee pollinators
in the coming decades.
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