99 research outputs found

    Four distinct trajectories of tau deposition identified in Alzheimer’s disease

    Get PDF
    Alzheimer’s Disease Neuroimaging Initiative.Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging.J.W.V. acknowledges support from the government of Canada through a tri-council Vanier Canada Graduate Doctoral fellowship from the McGill Centre for Integrative Neuroscience and the Healthy Brains, Healthy Lives initiative, and from the National Institutes of Health (NIH) (no. T32MH019112). A.L.Y. is supported by a Medical Research Council Skills Development Fellowship (MR/T027800/1). N.P.O. is a UK Research and Innovation Future Leaders Fellow (no. MR/S03546X/1). N.P.O. and D.C.A. acknowledge support from the UK National Institute for Health Research University College London Hospitals Biomedical Research Centre, and D.C.A. acknowledges support from the Engineering and Physical Sciences Research Council grant no. EP/M020533/1. M.J.G. is supported by the Miguel Servet program (no. CP19/00031) and a research grant (no. PI20/00613) of the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional. R.L.J. acknowledges support from the NIH (no. K99AG065501). This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant no. 666992. The BioFINDER studies are supported by the Swedish Research Council (no. 2016-00906), the Knut and Alice Wallenberg Foundation (no. 2017-0383), the Marianne and Marcus Wallenberg Foundation (no. 2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer’s Foundation (no. AF-939932), the Swedish Brain Foundation (no. FO2019-0326), the Swedish Parkinson Foundation (no. 1280/20), the Skåne University Hospital Foundation (no. 2020-O000028), Regionalt Forskningsstöd (no. 2020-0314) and the Swedish Federal Government under the ALF agreement (no. 2018-Projekt0279). The Tau PET study in Gangnam Severance Hospital was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (nos. NRF2018R1D1A1B07049386 and NRF2020R1F1A1076154) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute funded by the Ministry of Health and Welfare, Republic of Korea (grant no. HI18C1159). We also thank B. L. Miller, H. J. Rosen, M. Gorno Tempini and W. Jagust for supporting the UCSF tau-PET studies, which were funded through the following sources: National Institute on Aging (NIA) no. R01 AG045611 (G.D.R.), no. P50 AG23501 (B.L.M., H.J.R., G.D.R.), no. P01 AG019724 (B.L.M., H.J.R., G.D.R.). The precursor of 18F-flortaucipir was provided by AVID Radiopharmaceuticals. The precursor of 18F-flutemetamol was sponsored by GE Healthcare. The precursor of 18F-RO948 was provided by Roche. Data collection and sharing for this project were funded by ADNI (NIH grant no. U01 AG024904) and Department of Defense ADNI (award no. W81XWH-12-2-0012). ADNI is funded by the NIA, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; Bioclinica; Biogen; Bristol Myers Squibb; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; EUROIMMUN; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research Development; Johnson & Johnson Pharmaceutical Research Development; Lumosity; Lundbeck; Merck; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Neuroimaging in Dementia

    Get PDF
    Dementia is a common illness with an incidence that is rising as the aged population increases. There are a number of neurodegenerative diseases that cause dementia, including Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, which is subdivided into the behavioral variant, the semantic variant, and nonfluent variant. Numerous other neurodegenerative illnesses have an associated dementia, including corticobasal degeneration, Creutzfeldt–Jakob disease, Huntington’s disease, progressive supranuclear palsy, multiple system atrophy, Parkinson’s disease dementia, and amyotrophic lateral sclerosis. Vascular dementia and AIDS dementia are secondary dementias. Diagnostic criteria have relied on a constellation of symptoms, but the definite diagnosis remains a pathologic one. As treatments become available and target specific molecular abnormalities, differentiating amongst the various primary dementias early on becomes essential. The role of imaging in dementia has traditionally been directed at ruling out treatable and reversible etiologies and not to use imaging to better understand the pathophysiology of the different dementias. Different brain imaging techniques allow the examination of the structure, biochemistry, metabolic state, and functional capacity of the brain. All of the major neurodegenerative disorders have relatively specific imaging findings that can be identified. New imaging techniques carry the hope of revolutionizing the diagnosis of neurodegenerative disease so as to obtain a complete molecular, structural, and metabolic characterization, which could be used to improve diagnosis and to stage each patient and follow disease progression and response to treatment. Structural and functional imaging modalities contribute to the diagnosis and understanding of the different dementias

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Amyloid deposition in younger adults is linked to episodic memory performance

    No full text
    Objective: To examine the relationship of beta-amyloid (A beta) deposition to episodic memory in younger (30-49 years), middle-older (50-69 years), and older adults (70-89 years). We hypothesized that subclinical levels of amyloid would be linked to memory in adults across the lifespan in a dose-dependent fashion. Of great interest was whether, within the younger group, a relationship between amyloid level and memory performance could be established. Methods: A total of 147 participants from the Dallas Lifespan Brain Study, aged 30-89, underwent PET imaging with F-18-florbetapir and cognitive assessment. We assessed the relationship between age group and amyloid and tested whether A beta differentially affected memory performance across the 3 age groups. Results: We report a significant association of age to amyloid burden for younger and middle-older adults (r = 0.57 and 0.28, respectively), but not for the oldest group, although absolute level of amyloid increased across the age groups. Importantly, the youngest group showed a significant decrease in recall (r = 20.47, p = 0.004) and recognition memory (r = -0.48, p = 0.003) as a function of increases in A beta burden, whereas this relationship was absent in the middle-older and oldest group (all p. 0.23). Conclusions: These results indicate that variance in subclinical levels of A beta in younger adults is meaningful, and suggest that higher SUVRs relative to one's peers at a younger age is not entirely benign
    corecore