7 research outputs found

    The role of a class III gibberellin 2-oxidase in tomato internode elongation

    Full text link
    [EN] A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. We thank the Tomato Genetics Resource Center for providing seed of the M82 and Heinz cultivars. The material was developed by and/or obtained from the UC Davis/C M Rick Tomato Genetics Resource Center and maintained by the Department of Plant Sciences, University of California, Davis, CA 95616, USA. We thank Anthony Bolger, Alisdair Fernie and Bjorn Usadel for providing us with access to pre-publication genomic reads of the S. lycopersicum cultivar M82, and Cristina Urbez and Noel Blanco-Tourinan (IBMCP, Spain) for technical help with in vitro production of TIE1. This work was supported in part by the Elsie Taylor Stocking Memorial Fellowship awarded to ASL in 2013, by NSF grant IOS-0820854, by USDA National Institute of Food and Agriculture project CA-D-PLB-2465-H, by internal UC Davis funds, and by Spanish Ministry of Economy and Competitiveness grant BFU2016-80621-P.Lavelle, A.; Gath, N.; Devisetty, U.; Carrera Bergua, E.; Lopez Diaz, I.; Blazquez Rodriguez, MA.; Maloof, J. (2018). The role of a class III gibberellin 2-oxidase in tomato internode elongation. The Plant Journal. https://doi.org/10.1111/tpj.14145SAndrés, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., García-Martínez, J. L., … Coupland, G. (2014). SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at theArabidopsisshoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences, 111(26), E2760-E2769. doi:10.1073/pnas.1409567111Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., … Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034-1038. doi:10.1038/ng.3046Bowen, M. E., Henke, K., Siegfried, K. R., Warman, M. L., & Harris, M. P. (2011). Efficient Mapping and Cloning of Mutations in Zebrafish by Low-Coverage Whole-Genome Sequencing. Genetics, 190(3), 1017-1024. doi:10.1534/genetics.111.136069Burset, M. (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Research, 28(21), 4364-4375. doi:10.1093/nar/28.21.4364Chen, W., Yao, J., Chu, L., Yuan, Z., Li, Y., & Zhang, Y. (2015). Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theoretical and Applied Genetics, 128(3), 539-547. doi:10.1007/s00122-014-2452-2Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695Cuperus, J. T., Montgomery, T. A., Fahlgren, N., Burke, R. T., Townsend, T., Sullivan, C. M., & Carrington, J. C. (2009). Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proceedings of the National Academy of Sciences, 107(1), 466-471. doi:10.1073/pnas.0913203107Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979Devisetty, U. K., Covington, M. F., Tat, A. V., Lekkala, S., & Maloof, J. N. (2014). Polymorphism Identification and Improved Genome Annotation ofBrassica rapaThrough Deep RNA Sequencing. G3: Genes|Genomes|Genetics, 4(11), 2065-2078. doi:10.1534/g3.114.012526Eckardt, N. A. (2007). GA Perception and Signal Transduction: Molecular Interactions of the GA Receptor GID1 with GA and the DELLA Protein SLR1 in Rice. The Plant Cell, 19(7), 2095-2097. doi:10.1105/tpc.107.054916Ernst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., & Larsen, S. (2006). Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358(4), 1106-1124. doi:10.1016/j.jmb.2006.02.056Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726Garrison , E. Marth , G. 2012 Haplotype-based variant detection from short-read sequencingHedden, P., & Graebe, J. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates ofCucurbita maxima endosperm andMalus pumila embryos. Journal of Plant Growth Regulation, 4(1-4), 111-122. doi:10.1007/bf02266949Kimura, S., & Sinha, N. (2008). Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harbor Protocols, 2008(12), pdb.emo105-pdb.emo105. doi:10.1101/pdb.emo105Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., … Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences, 110(28), E2655-E2662. doi:10.1073/pnas.1309606110Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, J., Sima, W., Ouyang, B., Wang, T., Ziaf, K., Luo, Z., … Ye, Z. (2012). Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany, 63(18), 6407-6420. doi:10.1093/jxb/ers295Lorrain, S., & Fankhauser, C. (2012). Plant Development: Should I Stop or Should I Grow? Current Biology, 22(16), R645-R647. doi:10.1016/j.cub.2012.06.054Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silicoscreening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. doi:10.1111/j.1365-313x.2004.02088.xMichelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828Pimenta Lange, M. J., Liebrandt, A., Arnold, L., Chmielewska, S.-M., Felsberger, A., Freier, E., … Lange, T. (2013). Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry, 90, 62-69. doi:10.1016/j.phytochem.2013.02.006Raskin, I., & Kende, H. (1984). Role of Gibberellin in the Growth Response of Submerged Deep Water Rice. Plant Physiology, 76(4), 947-950. doi:10.1104/pp.76.4.947Reinecke, D. M., Wickramarathna, A. D., Ozga, J. A., Kurepin, L. V., Jin, A. L., Good, A. G., & Pharis, R. P. (2013). Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea. PLANT PHYSIOLOGY, 163(2), 929-945. doi:10.1104/pp.113.225987Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24-26. doi:10.1038/nbt.1754Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A. H., Nielsen, K. L., … Andersen, S. U. (2009). SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6(8), 550-551. doi:10.1038/nmeth0809-550Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D., & Amasino, R. M. (2002). Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. The Plant Cell, 15(1), 151-163. doi:10.1105/tpc.005975Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Sun, T., & Gubler, F. (2004). MOLECULAR MECHANISM OF GIBBERELLIN SIGNALING IN PLANTS. Annual Review of Plant Biology, 55(1), 197-223. doi:10.1146/annurev.arplant.55.031903.141753Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), 1105-1111. doi:10.1093/bioinformatics/btp120Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016Tsai, H., Howell, T., Nitcher, R., Missirian, V., Watson, B., Ngo, K. J., … Comai, L. (2011). Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiology, 156(3), 1257-1268. doi:10.1104/pp.110.169748Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., … Matsuoka, M. (2007). Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin. The Plant Cell, 19(7), 2140-2155. doi:10.1105/tpc.106.043729Wickham, H. (2016). ggplot2. Use R! doi:10.1007/978-3-319-24277-4Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An «Electronic Fluorescent Pictograph» Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE, 2(8), e718. doi:10.1371/journal.pone.0000718Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89-95. doi:10.1016/j.pbi.2014.06.010Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.09280

    The RAD51 and DMC1 homoeologous genes of bread wheat: cloning, molecular characterization and expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiotic recombination in eukaryotes requires two homologues of the <it>E. coli </it>RecA proteins: Rad51 and Dmc1. Both proteins play important roles in the binding of single stranded DNA, homology search, strand invasion and strand exchange. Meiotic recombination has been well studied in Arabidopsis, rice, maize and the orthologues of <it>RAD51 </it>and <it>DMC1 </it>have been characterized. However genetic analysis of the <it>RAD51 </it>and <it>DMC1 </it>genes in bread wheat has been hampered due to the absence of complete sequence information and because of the existence of multiple copies of each gene in the hexaploid wheat genome.</p> <p>Findings</p> <p>In this study we have identified that <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues are located on group 7 and group 5 chromosomes of hexaploid wheat, respectively. Comparative sequence analysis of cDNA derived from the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues revealed limited sequence divergence at both the nucleotide and the amino acid level. Indeed, comparisons between the predicted amino acid sequences of <it>TaRAD51 </it>and <it>TaDMC1 </it>and those of other eukaryotes reveal a high degree of evolutionary conservation. Despite the high degree of sequence conservation at the nucleotide level, genome-specific primers for cDNAs of <it>TaRAD51 </it>and <it>TaDMC1 </it>were developed to evaluate expression patterns of individual homoeologues during meiosis. QRT-PCR analysis showed that expression of the <it>TaRAD51 </it>and <it>TaDMC1 </it>cDNA homoeologues was largely restricted to meiotic tissue, with elevated levels observed during the stages of prophase I when meiotic recombination occurs. All three homoeologues of both strand-exchange proteins (<it>TaRAD51 </it>and <it>TaDMC1</it>) are expressed in wheat.</p> <p>Conclusions</p> <p>Bread wheat contains three expressed copies of each of the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues. While differences were detected between the three cDNA homoeologues of <it>TaRAD51 </it>as well as the three homoeologues of <it>TaDMC1</it>, it is unlikely that the predicted amino acid substitutions would have an effect on the protein structure, based on our three-dimensional structure prediction analyses. There are differences in the levels of expression of the three homoeologues of <it>TaRAD51 </it>and <it>TaDMC1 </it>as determined by QRT-PCR and if these differences are reflected at the protein level, bread wheat may be more dependent upon a particular homoeologue to achieve full fertility than all three equally.</p

    Improved RNA-seq Workflows Using CyVerse Cyberinfrastructure

    No full text
    RNA-seq is a vital method for understanding gene structure and expression patterns. Typical RNA-seq analysis protocols use sequencing reads of length 50 to 150 nucleotides for alignment to the reference genome and assembly of transcripts. The resultant transcripts are quantified and used for differential expression and visualization. Existing tools and protocols for RNA-seq are vast and diverse; given their differences in performance, it is critical to select an analysis protocol that is scalable, accurate, and easy to use. Tuxedo, a popular alignment-based protocol for RNA-seq analysis, has been updated with HISAT2, StringTie, StringTie-merge, and Ballgown, and the updated protocol outperforms its predecessor. Similarly, new pseudo-alignment-based protocols like Kallisto and Sleuth reduce runtime and improve performance. However, these tools are challenging for researchers lacking command-line experience. Here, we describe two new RNA-seq analysis protocols, in which all tools are deployed on CyVerse Cyberinfrastructure with user-friendly graphical user interfaces, and validate their performance using plant RNA-seq data. (c) 2018 by John Wiley & Sons, Inc

    A Genomic Analysis of Factors Driving lincRNA Diversification: Lessons from Plants

    No full text
    Transcriptomic analyses from across eukaryotes indicate that most of the genome is transcribed at some point in the developmental trajectory of an organism. One class of these transcripts is termed long intergenic noncoding RNAs (lincRNAs). Recently, attention has focused on understanding the evolutionary dynamics of lincRNAs, particularly their conservation within genomes. Here, we take a comparative genomic and phylogenetic approach to uncover factors influencing lincRNA emergence and persistence in the plant family Brassicaceae, to which Arabidopsis thaliana belongs. We searched 10 genomes across the family for evidence of >5000 lincRNA loci from A. thaliana. From loci conserved in the genomes of multiple species, we built alignments and inferred phylogeny. We then used gene tree/species tree reconciliation to examine the duplication history and timing of emergence of these loci. Emergence of lincRNA loci appears to be linked to local duplication events, but, surprisingly, not whole genome duplication events (WGD), or transposable elements. Interestingly, WGD events are associated with the loss of loci for species having undergone relatively recent polyploidy. Lastly, we identify 1180 loci of the 6480 previously annotated A. thaliana lincRNAs (18%) with elevated levels of conservation. These conserved lincRNAs show higher expression, and are enriched for stress-responsiveness and cis-regulatory motifs known as conserved noncoding sequences (CNSs). These data highlight potential functional pathways and suggest that CNSs may regulate neighboring genes at both the genomic and transcriptomic level. In sum, we provide insight into processes that may influence lincRNA diversification by providing an evolutionary context for previously annotated lincRNAs.National Science Foundation [1409251, 144490]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato

    No full text
    International audienceAlthough applied over extremely short timescales, artificial selection has dramatically altered the form, physiology, and life history of cultivated plants. We have used RNAseq to define both gene sequence and expression divergence between cultivated tomato and five related wild species. Based on sequence differences, we detect footprints of positive selection in over 50 genes. We also document thousands of shifts in gene-expression level, many of which resulted from changes in selection pressure. These rapidly evolving genes are commonly associated with environmental response and stress tolerance. The importance of environmental inputs during evolution of gene expression is further highlighted by large-scale alteration of the light response coexpression network between wild and cultivated accessions. Human manipulation of the genome has heavily impacted the tomato transcriptome through directed admixture and by indirectly favoring nonsynonymous over synonymous substitutions. Taken together, our results shed light on the pervasive effects artificial and natural selection have had on the transcriptomes of tomato and its wild relatives

    Shade Avoidance Components and Pathways in Adult Plants Revealed by Phenotypic Profiling

    No full text
    corecore