19 research outputs found

    β-Chitin nano-Fibrils Self-Assembly in Aqueous Environments

    Get PDF
    Chitin is one of the most studied biopolymers but the understanding of how it assembles from molecules to microfibers is still limited. Organisms are able to assemble chitin with precise control over polymorphism, texture, and final morphology. The produced hierarchical structure leads to materials with outstanding mechanical properties. In this study, the self-assembly in aqueous solutions of \u3b2-chitin nanofibrils, as far as possible similar to their native state, is investigated. These nanofibrils increase their tendency to self-assemble in fibers, up to millimetric length and 4810 \u3bcm thickness, with the pH increasing from 3 to 8, forming loosely organized bundles as observed using cryo-transmission electron microscopy. The knowledge from this study contributes to the understanding of the self-assembly process that follows chitin once extruded from cells in living organisms. Moreover, it describes a model system which can be used to investigate how other biomolecules can affect the self-assembly of chitin nanofibrils

    Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications

    Get PDF
    A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material. A certain degree of fibrillar alignment was achieved basing on the shear stress induced by the nozzle. In this study we took into account a single variable, the nozzle's internal diameter (NID). In fact, a positive correlation between NID, fibril alignment, and mechanical resistance was observed. A negative correlation with NID was observed with porosity, exposed surface, and lightly with water content. No correlation was observed with maximum elongation (similar to 50%), and the scaffold's excellent biocompatibility, which appeared unaltered. Overall, a single variable allowed a customization of different material features, which could be further tuned, adding control over other aspects of the synthetic process. Moreover, this manufacturing could be potentially applied to any polymer

    A non‑lethal method to assess element content in the endangered Pinna nobilis

    Get PDF
    The fan shell Pinna nobilis is the largest bivalve endemic to the Mediterranean and is actually a strongly endangered species. Due to the biological, ecological, and historical relevance of this species, the research of a non-lethal method to relate the element content in organism’s tissues and environment can provide information potentially useful to evaluate environmental pollution and organism physiological status. In this study, a screening on element concentration in the animal growing environment (seawater and sediments) and in four soft tissues (hepatopancreas, gills, mantle, and muscle), and two acellular tissues (calcite shell layer, and byssus) was performed. The comparison among these results was used to assess whether the no-lethal acellular tissue element concentration can be used to reveal the element presence in the environment and soft tissues. Elements, such as B, Ag, As, Mn, Mo, Pb, or Se, showed a possible relationship between their presence in the byssus and soft tissues. In the byssus Cr, Sb, Sn, and V have shown to be mostly related to the environment, more than the soft tissues, and might be used to draw a historical record of the exposure of the organism. The element concentration in the calcite shell layer did not relate with environmental element concentrations. Essential elements, like Cu, Fe, Ni, and Zn, were present in calcite shell layer and byssus and are likely related to their biological activity in the organism. The research also gave an overview on the presence of pollution and on the preferential intake route of the element. In summary, this study, performed on a limited number of specimens of this protected species, indicated that element concentration in the byssus can be applied as non-lethal method to monitor this endangered species and its interaction with the elements in the growing environment

    Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications

    No full text
    A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material. A certain degree of fibrillar alignment was achieved basing on the shear stress induced by the nozzle. In this study we took into account a single variable, the nozzle’s internal diameter (NID). In fact, a positive correlation between NID, fibril alignment, and mechanical resistance was observed. A negative correlation with NID was observed with porosity, exposed surface, and lightly with water content. No correlation was observed with maximum elongation (~50%), and the scaffold’s excellent biocompatibility, which appeared unaltered. Overall, a single variable allowed a customization of different material features, which could be further tuned, adding control over other aspects of the synthetic process. Moreover, this manufacturing could be potentially applied to any polymer

    Hierarchically organized chitin-based matrices

    No full text
    Chitin is the second most abundant biopolymer on Earth and the most diffused across the known species, being present in more than 70 % of them. It is present in a huge variety of different structures and morphologies being a massive pool of information for new material science approach. This thesis aims to study chitin at different level of organization using diverse approaches. Three main topics are discussed in this manuscript. The first is the use of a bottom-up approach to study chitin nanofibrils self-assembly in water triggering the assembly by pH increment. Successively, the assembly was studied in presence of another pH responsive biomacromolecule, the collagen, to get new composite materials and study how the assembly and the chitin/collagen ratio influence fibroblast’s viability. The second topic focuses on biogenic organized chitin-based matrices, in both Ariolimax californicus and Loligo vulgaris. This study aims to understand the features that give raise to the properties of those matrices. Finally, in the last section a top-up approach was used to exploit natural hierarchically organized chitinous matrices to obtain organized functional materials introducing a catechol on the free amino group of deacetylated chitin (DA 77 %). In conclusion, this study of chitin at different level of organization emphasized different novelties depending on the organization level studied. Moreover, this thesis gives many possibilities for future bioinspired routes to get highly organized materials, or for highly organized functional materials based on natural chitin-based matrices

    Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices

    Get PDF
    The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials

    Exploitation of mussel byssus mariculture waste as a water remediation material

    Get PDF
    Dye pollution represents an important environmental concern, especially from textile industries in the South of Asia. On the other hand, biomass accumulation derived from mussel processing in alimentary industries is also an environmental problem. In this research, these two environmental issues are addressed by proposing the reuse of mussel's protein anchoring threads, the byssus, as disposable material for dye water removal. The byssus was selected as substrate because it contains a distinctive variety of functional groups that can be exploited for diverse chemical interactions. This material was utilized in its native metaled state and in the de-metaled one, in order to study how the chemical state of the functional groups influences the adsorption properties of both anionic and cationic aromatic dyes. The results of comparative experiments of adsorption showed a higher uptake in the native metaled byssus for a model cationic dye, methylene blue, while the de-metaled byssus showed a higher uptake for a model anionic dye, Eosin Y. These results are considered in light of different uptake mechanisms, supported by the analyses of isotherm model parameters, in which diverse functional groups are involved as a function of substrate and dye chemical states

    \u3b2-Chitin samples with similar microfibril arrangement change mechanical properties varying the degree of acetylation

    No full text
    Chitin is widespread in nature and is increasingly used in synthetic process for the production of new biomaterials. Chitin degree of acetylation, crystalline structure and microfibril arrangement differentiate chemical, physical and mechanical properties. Nevertheless, no information are available on the relationship between the mechanical properties and the degree of acetylation (DA) in chitin samples in which the microfibril arrangement does not change. Here, samples of \u3b2-chitin with decreasing DA, up to chitosan, were prepared using the squid pen of Loligo vulgaris. These samples were characterized by CP-MAS NMR spectroscopy, scanning electron microscopy, thermal analyses, synchrotron X-ray fiber diffraction and tensile tests. The results showed a similar microfibril arrangement decreasing the DA, except for the chitosan sample. The mechanical properties showed an increase of the maximum strain and a reduction of the maximum stress and Young's modulus, decreasing the DA. These changes, not linear with the DA, were related to structural changes at molecular structure level. The knowledge deriving from this study is of interest both for the understanding of the mechanical properties of chitinous biological samples, but also for the design and synthesis of new biomacromolecular materials

    Structural characterization of the buccal mass of Ariolimax californicus (Gastropoda; Stylommatophora)

    Get PDF
    *Kaya, Murat ( Aksaray, Yazar )Biological materials such as chiton tooth, squid beak, and byssal threads of bivalves have inspired the development of new technologies. To this end, we have characterized the acellular components in the buccal mass of the terrestrial slug Ariolimax californicus (banana slug). These components are the radula, the jaw, and the odontophore. In the radula, calcium-rich denticles are tightly interlocked one to the other on top of a nanofibrous chitin membrane. The jaw has a nanostructured morphology made of chitin to achieve compression resistance and is directly linked to the foregut cuticle, which has a protective nanofibrous structure. Finally, in the odontophore, we observed a structurally elastic microstructure that interfaces soft tissues with a highly stressed radula membrane. Based on those observations, we discuss the interaction between these components and highlight how the materials in these task-specific components have evolved. This structure-properties-function study of the A. californicus’ buccal mass may aid in the design and fabrication of novel bioinspired materials...
    corecore