2,225 research outputs found

    Rogue wave spectra of the Sasa–Satsuma equation

    No full text
    We analyze the rogue wave spectra of the Sasa–Satsuma equation and their appearance in the spectra of chaotic wave fields produced through modulation instability. Chaotic wave fields occasionally produce high peaks that result in a wide triangular spectrum, which could be used for rogue wave detection.The authors acknowledge the support from the Volkswagen Stiftung. N. D. and N. A. acknowledge the support of the Australian Research Council (Discovery Project DP140100265). N. A. is a recipient of the Alexander von Humboldt Award (Germany). The work of JMSC is supported by the MINECO under contracts FIS2009- 09895 and TEC2012-37958-C02-02, and by C.A.M. under contract S2013/MIT-2790

    Rogue waves of the Sasa-Satsuma equation in a chaotic wave field

    Get PDF
    We study the properties of the chaotic wave fields generated in the frame of the Sasa-Satsuma equation (SSE). Modulation instability results in a chaotic pattern of small-scale filaments with a free parameter - the propagation constant k. The average velocity of the filaments is approximately given by the group velocity calculated from the dispersion relation for the plane-wave solution. Remarkably, our results reveal the reason for the skewed profile of the exact SSE rogue-wave solutions, which was one of their distinctive unexplained features. We have also calculated the probability density functions for various values of the propagation constant k, showing that probability of appearance of rogue waves depends on k

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Relativistic bound-state equations in three dimensions

    Get PDF
    Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches'' this procedure does not involve the use of delta-function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation theory diagrams. Consequently, such equations have two major advantages over quasi-potential equations: they may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the original four-dimensional equation. Secondly, a simple four-dimensional equation with the correct one-body limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting three-dimensional equation has the correct one-body limit and may be systematically improved upon. The quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is found that equations obtained using the method espoused here approximate the wave functions obtained from their parent four-dimensional equations significantly better than the corresponding quasi-potential equations do.Comment: 28 pages, RevTeX, 6 figures attached as postscript files. Accepted for publication in Phys. Rev. C. Minor changes from original version do not affect argument or conclusion

    Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations

    Get PDF
    The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the NNNN interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the NNNN interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuteron's vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.Comment: 42 pages, RevTe

    Development and exploitation of a controlled vocabulary in support of climate modelling

    Get PDF
    There are three key components for developing a metadata system: a container structure laying out the key semantic issues of interest and their relationships; an extensible controlled vocabulary providing possible content; and tools to create and manipulate that content. While metadata systems must allow users to enter their own information, the use of a controlled vocabulary both imposes consistency of definition and ensures comparability of the objects described. Here we describe the controlled vocabulary (CV) and metadata creation tool built by the METAFOR project for use in the context of describing the climate models, simulations and experiments of the fifth Coupled Model Intercomparison Project (CMIP5). The CV and resulting tool chain introduced here is designed for extensibility and reuse and should find applicability in many more projects

    Nonperturbative study of generalized ladder graphs in a \phi^2\chi theory

    Full text link
    The Feynman-Schwinger representation is used to construct scalar-scalar bound states for the set of all ladder and crossed-ladder graphs in a \phi^2\chi theory in (3+1) dimensions. The results are compared to those of the usual Bethe-Salpeter equation in the ladder approximation and of several quasi-potential equations. Particularly for large couplings, the ladder predictions are seen to underestimate the binding energy significantly as compared to the generalized ladder case, whereas the solutions of the quasi-potential equations provide a better correspondence. Results for the calculated bound state wave functions are also presented.Comment: 5 pages revtex, 3 Postscripts figures, uses epsf.sty, accepted for publication in Physical Review Letter

    Relativistic three-body bound states and the reduction from four to three dimensions

    Full text link
    Beginning with an effective field theory based upon meson exchange, the Bethe-Salpeter equation for the three-particle propagator (six-point function) is obtained. Using the one-boson-exchange form of the kernel, this equation is then analyzed using time-ordered perturbation theory, and a three-dimensional equation for the propagator is developed. The propagator consists of a pre-factor in which the relative energies are fixed by the initial state of the particles, an intermediate part in which only global propagation of the particles occurs, and a post-factor in which relative energies are fixed by the final state of the particles. The pre- and post-factors are necessary in order to account for the transition from states where particles are off their mass shell to states described by the global propagator with all of the particle energies on shell. The pole structure of the intermediate part of the propagator is used to determine the equation for the three-body bound state: a Schr{\"o}dinger-like relativistic equation with a single, global Green's function. The role of the pre- and post-factors in the relativistic dynamics is to incorporate the poles of the breakup channels in the initial and final states. The derivation of this equation by integrating over the relative times rather than via a constraint on relative momenta allows the inclusion of retardation and dynamical boost corrections without introducing unphysical singularities.Comment: REVTeX, 21 pages, 4 figures, epsf.st

    Substantiating a political public sphere in the Scottish press : a comparative analysis

    Get PDF
    This article uses content analysis to characterize the performance of the media in a national public sphere, by setting apart those qualities that typify internal press coverage of a political event. The article looks at the coverage of the 1999 devolved Scottish election from the day before the election until the day after. It uses a word count to measure the election material in Scottish newspapers the Herald, the Press and Journal and the Scotsman, and United Kingdom newspapers the Guardian, the Independent and The Times, and categorizes that material according to discourse type, day and page selection. The article finds a number of qualities that typify the Scottish sample in particular, and might be broadly indicative of a political public sphere in action. Firstly, and not unexpectedly, it finds that the Scottish newspapers carry significantly more election coverage. Just as tellingly, though, the article finds that the Scottish papers offer a greater proportion of advice and background information, in the form of opinion columns and feature articles. It also finds that the Scottish papers place a greater concentration of both informative and evaluative material in the period before the vote, consistent with their making a contribution to informed political action. Lastly, the article finds that the Scottish sample situates coverage nearer the front of the paper and places a greater proportion on recto pages. The article therefore argues that the Scottish papers display features that distinguish them from the UK papers, and are broadly consistent with their forming part of a deliberative public sphere, and suggests that these qualities might be explored as a means of judging future media performance
    • 

    corecore