The Feynman-Schwinger representation is used to construct scalar-scalar bound
states for the set of all ladder and crossed-ladder graphs in a \phi^2\chi
theory in (3+1) dimensions. The results are compared to those of the usual
Bethe-Salpeter equation in the ladder approximation and of several
quasi-potential equations. Particularly for large couplings, the ladder
predictions are seen to underestimate the binding energy significantly as
compared to the generalized ladder case, whereas the solutions of the
quasi-potential equations provide a better correspondence. Results for the
calculated bound state wave functions are also presented.Comment: 5 pages revtex, 3 Postscripts figures, uses epsf.sty, accepted for
publication in Physical Review Letter