234 research outputs found

    Dislocation patterns and the similitude principle: 2.5D mesoscale simulations

    Get PDF
    During plastic flow of crystalline solids, dislocations self-organize in the form of patterns, with a wavelength that is inversely proportional to stress. After four decades of investigations, the origin of this property is still under discussion. We show that dislocation patterns verifying the principle of similitude can be obtained from dynamics simulations of double slip. These patterns are formed in the presence of long- and short-range interactions, but they are not significantly modified when only short-range interactions are present. This new insight into dislocation patterning phenomena has important implications regarding current models

    Nanoindentation of Au nanoparticles – A combined experimental/computational multiscale study

    Get PDF
    The idea of dimensionality and size effect the strength of metallic specimen as their typical size is pushed into the sub-micrometer scale is well established. The importance of the shape at the nanoscale was demonstrated on Au thin-films and nanoparticles in nanoindentation experiments. It was shown that nanoparticles are substantially softer than thin-films of the same height and the smallest nanoparticles are softer than the largest ones [1]. We propose that the size effect arises from the interaction between the lateral free surfaces on the plastic zone. However, experiments alone cannot provide the understanding on the governing microstructural dislocation mechanisms and we demonstrate here a combined experimental/computational study, by developing a multiscale frame to study nanoindentation of nanoparticles from the atomic- to the macro-scale. Please click Additional Files below to see the full abstract

    Contribution à l'étude des propriétés mécaniques du combustible nucléaire (Modélisation atomistique de la déformation du dioxyde d'uranium)

    Get PDF
    Les propriétés mécaniques du combustibles nucléaire sont un problème complexe qui fait intervenir de nombreux mécanismes différents à des échelles diverses. Afin de faire progresser notre connaissance de ce matériau, nous avons effectué des simulations utilisant des modèles de Dynamique Moléculaire. Ces simulations permettent l'étude de différents mécanismes de déformation du dioxyde d'uranium à l'échelle atomique. Nous avons mis en place une procédure permettant de calculer les chemins de transition entre différents polymorphes de l'UO2 de manière statique et dynamique. Ces calculs ont confirmé la stabilité des structures fluorine à pression ambiante et cotunnite en compression, vers laquelle une transition reconstructive a été observée. Ils ont aussi montré l'importance de la direction de sollicitation principale pour déterminer la transition activée en tension, soit vers une structure scrutinyite, soit vers une structure rutile. D'autre part, les propriétés élastiques de l'UO2 ont été déterminées en température à partir d'une approche multi-modèles. L'accord relatif entre les potentiels existants pour l'UO2 a été utilisé pour déterminer des paramètres pour des modèles mésoscopiques. La propagation d une fissure dans un monocristal a ensuite été étudié. Lors de ces simulations nous avons mis en évidence l'apparition de phases secondaires en pointe de fissure. Ce mécanisme prédit par les modèles atomistiques pourrait jouer un rôle important lors de la propagation d une fissure aux échelles supérieures. Finalement, certaines propriétés des dislocations coin stabilisées dans le cristal UO2 ont été étudiées. La structure de cœur de ces dislocations dans différents plans de glissements a été comparée. Leur contrainte critique de glissement en fonction de la température a été calculée. Ces derniers calculs suggèrent un lien direct entre le désordre chimique observé au cœur de dislocations et leur mobilité.Mechanical properties of nuclear fuel are a complex problem, involving many coupled mechanisms occurring at different length scales. We used Molecular Dynamics models to bring some light on some of these mechanisms at the atomic scale. We devised a procedure to calculate transition pathways between some UO2 polymorphs, and then carried out dynamics simulations of these transitions. We confirmed the stability of the cotunnite structure at high pressure using various empirical potentials, the fluorite structure being the most stable at room pressure. Moreover, we showed a reconstructive phase transition between the fluorite and cotunnite structures. We also showed the importance of the major deformation axis on the kind of transition that occur under tensile conditions. Depending on the loading direction, a scrutinyite or rutile phase can appear. We then calculated the elastic behaviour of UO2 using different potentials. The relative agreement between them was used to produce a set of parameters to be used as input in mesoscale models. We also simulated crack propagation in UO2 single crystals. These simulations showed secondary phases nucleation at crack tips, and hinted at the importance thereof on crack propagation at higher length-scales. We then described some properties of edge dislocations in UO2. The core structures were compared for various glide planes. The critical resolved shear stress was calculated for temperatures up to 2000 K. These calculations showed a link between lattice disorder at the dislocations core and the dislocations mobilityCHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Equation of motion for dislocations with inertial effects

    Full text link
    An approximate equation of motion is proposed for screw and edge dislocations, which accounts for retardation and for relativistic effects in the subsonic range. Good quantitative agreement is found, in accelerated or in decelerated regimes, with numerical results of a more fundamental nature.Comment: 6 pages, 4 figures, LaTe

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    Get PDF
    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstructure influence on the cyclic plasticity behaviour. This method was incorporated into the commercially available software ABAQUS by coding a UMAT user subroutine. Based on the results of fatigue tests and material characterisation, the full set of material constants for the crystal plasticity model was determined. The CPFEM framework used in this paper can be used to predict the crack initiation sites based on the local accumulated plastic deformation and local plastic dissipation energy criterion, but with limitation in predicting the crack initiation caused by precipitates

    Plastic Flow in Two-Dimensional Solids

    Get PDF
    A time-dependent Ginzburg-Landau model of plastic deformation in two-dimensional solids is presented. The fundamental dynamic variables are the displacement field \bi u and the lattice velocity {\bi v}=\p {\bi u}/\p t. Damping is assumed to arise from the shear viscosity in the momentum equation. The elastic energy density is a periodic function of the shear and tetragonal strains, which enables formation of slips at large strains. In this work we neglect defects such as vacancies, interstitials, or grain boundaries. The simplest slip consists of two edge dislocations with opposite Burgers vectors. The formation energy of a slip is minimized if its orientation is parallel or perpendicular to the flow in simple shear deformation and if it makes angles of ±π/4\pm \pi/4 with respect to the stretched direction in uniaxial stretching. High-density dislocations produced in plastic flow do not disappear even if the flow is stopped. Thus large applied strains give rise to metastable, structurally disordered states. We divide the elastic energy into an elastic part due to affine deformation and a defect part. The latter represents degree of disorder and is nearly constant in plastic flow under cyclic straining.Comment: 16pages, Figures can be obtained at http://stat.scphys.kyoto-u.ac.jp/index-e.htm
    corecore