654 research outputs found

    Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    Get PDF
    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the Orszag-Tang solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo--spectral solutions quite well. We show that low-order truncation--even with a comparable number of global degrees of freedom--fails to correctly model some strong (sup--norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page

    On completeness of logic programs

    Full text link
    Program correctness (in imperative and functional programming) splits in logic programming into correctness and completeness. Completeness means that a program produces all the answers required by its specification. Little work has been devoted to reasoning about completeness. This paper presents a few sufficient conditions for completeness of definite programs. We also study preserving completeness under some cases of pruning of SLD-trees (e.g. due to using the cut). We treat logic programming as a declarative paradigm, abstracting from any operational semantics as far as possible. We argue that the proposed methods are simple enough to be applied, possibly at an informal level, in practical Prolog programming. We point out importance of approximate specifications.Comment: 20 page

    An efficient iterative solution method for the Chebyshev collocation of advection-dominated transport problems

    Get PDF
    A new Chebyshev collocation algorithm is proposed for the iterative solution of advection-diffusion problems. The main features of the method lie in the original way in which a finite-difference preconditioner is built and in the fact that the solution is collocated on a set of nodes matching the standard Gauss-Lobatto-Chebyshev set only in the case of pure diffusion problems. The key point of the algorithm is the capability of the preconditioner to represent the high-frequency modes when dealing with advection-dominated problems. The basic idea is developed for a one-dimensional case and is extended to two-dimensional problems. A series of numerical experiments is carried out to demonstrate the efficiency of the algorithm. The proposed algorithm can also be used in the context of the incompressible Navier-Stokes equations

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case

    Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles

    Full text link
    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincar\'e map associated to the system. We show that for strong interactions the Poincar\'e map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincar\'e map under study, but also to a wide class of general n-dimensional piecewise contractive maps.Comment: 46 pages. In this version we added many comments suggested by the referees all along the paper, we changed the introduction and the section containing the conclusions. The final version will appear in Journal of Mathematical Biology of SPRINGER and will be available at http://www.springerlink.com/content/0303-681

    Ultra-short pulses in linear and nonlinear media

    Get PDF
    We consider the evolution of ultra-short optical pulses in linear and nonlinear media. For the linear case, we first show that the initial-boundary value problem for Maxwell's equations in which a pulse is injected into a quiescent medium at the left endpoint can be approximated by a linear wave equation which can then be further reduced to the linear short-pulse equation. A rigorous proof is given that the solution of the short pulse equation stays close to the solutions of the original wave equation over the time scales expected from the multiple scales derivation of the short pulse equation. For the nonlinear case we compare the predictions of the traditional nonlinear Schr\"odinger equation (NLSE) approximation which those of the short pulse equation (SPE). We show that both equations can be derived from Maxwell's equations using the renormalization group method, thus bringing out the contrasting scales. The numerical comparison of both equations to Maxwell's equations shows clearly that as the pulse length shortens, the NLSE approximation becomes steadily less accurate while the short pulse equation provides a better and better approximation

    Middle-out reasoning for synthesis and induction

    Get PDF
    We develop two applications of middle-out reasoning in inductive proofs: Logic program synthesis and the selection of induction schemes. Middle-out reasoning as part of proof planning was first suggested by Bundy et al [Bundy et al 90a]. Middle-out reasoning uses variables to represent unknown terms and formulae. Unification instantiates the variables in the subsequent planning, while proof planning provides the necessary search control. Middle-out reasoning is used for synthesis by planning the verification of an unknown logic program: The program body is represented with a meta-variable. The planning results both in an instantiation of the program body and a plan for the verification of that program. If the plan executes successfully, the synthesized program is partially correct and complete. Middle-out reasoning is also used to select induction schemes. Finding an appropriate induction scheme during synthesis is difficult, because the recursion of the program, which is un..
    corecore