

Edinburgh Research Explorer

Middle-out reasoning for synthesis and induction

Citation for published version:
Kraan, I, Basin, D & Bundy, A 1996, 'Middle-out reasoning for synthesis and induction' Journal of Automated
Reasoning, vol 16, no. 1-2, pp. 113-145., 10.1007/BF00244461

Digital Object Identifier (DOI):
10.1007/BF00244461

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Journal of Automated Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/BF00244461
http://www.research.ed.ac.uk/portal/en/publications/middleout-reasoning-for-synthesis-and-induction(220ec5f5-307d-4fa7-8f3c-ecd2cfc72b22).html

Middle-Out Reasoning for Synthesis and InductionIna Kraan� David Basiny Alan BundyzJuly 10, 1995AbstractWe develop two applications of middle-out reasoning in inductive proofs:Logic program synthesis and the selection of induction schemes. Middle-out reasoning as part of proof planning was �rst suggested by Bundy et al[Bundy et al 90a]. Middle-out reasoning uses variables to represent unknownterms and formulae. Uni�cation instantiates the variables in the subsequentplanning, while proof planning provides the necessary search control.Middle-out reasoning is used for synthesis by planning the veri�cation ofan unknown logic program: The program body is represented with a meta-variable. The planning results both in an instantiation of the program bodyand a plan for the veri�cation of that program. If the plan executes success-fully, the synthesized program is partially correct and complete.Middle-out reasoning is also used to select induction schemes. Findingan appropriate induction scheme during synthesis is di�cult, because therecursion of the program, which is unknown at the outset, determines theinduction in the proof. In middle-out induction, we set up a schematic stepcase by representing the constructors that are applied to induction variableswith meta-variables. Once the step case is complete, the instantiated variablescorrespond to an induction appropriate to the recursion of the program.We have implemented these techniques as an extension of the proof plan-ning system CLAM [Bundy et al 90c], called Periwinkle, and synthesized avariety of programs fully automatically.keywords: Automated theorem proving, proof planning, induction, logic programsynthesis, meta-variables, higher-order uni�cation1 IntroductionWe develop techniques based on proof planning and middle-out reasoning that en-able the automatic synthesis of logic programs. Proof planning entails explicitreasoning about how to construct proofs. Middle-out reasoning allows proof plan-ning to progress even though an object being reasoned about is not yet fully known.Middle-out reasoning represents unspeci�ed objects in the proof with variables andinstantiates them using uni�cation. Thus we can plan proofs while leaving certain�Supported by the Swiss National Science Foundation and ARC Project BC/DAAD Grant 438.The work described in this paper was carried out while the �rst author was at the Department ofArti�cial Intelligence of the University of Edinburgh.ySupported by the German Ministry for Research and Technology (BMFT) under grant ITS9102 and ARC Project BC/DAAD Grant 438. Responsibility for the contents of this publicationlies with the authors.zSupported by SERC grant GR/J/80702, ESPRIT BRP grant 6810, ESPRIT BRP grant EC-US 019-76094, and ARC Project BC/DAAD Grant 438.1

unknown terms or formulae to be �lled in at a later stage. In program synthesisbased on inductive proofs, there are two things that are unknown: First, most ob-viously, the program to be synthesized, but second the type of induction used inthe proof. This is because the appropriate type of induction depends on the typeof recursion of the program to be synthesized.Middle-out reasoning for program synthesis and induction has been implemented asan extension of the proof planning system CLAM [Bundy et al 90c]. The extendedsystem, called Periwinkle, has been used to synthesize a variety of programs. Peri-winkle is available on request from the �rst author.This paper elaborates and extends [Kraan et al 93a, Kraan et al 93b]; more detailcan be found in [Kraan 94]. The paper is organized as follows: Section 2 is anintroduction to proof planning. Sections 3 and 4 present middle-out reasoning forlogic program synthesis and the selection of induction schemes. Section 5 presentsnew methods that proved necessary for synthesis. Section 6 reports on the imple-mentation and on practical results. Section 7 presents ideas for further research,and section 8 draws conclusions.2 Proof PlanningTo use the built-in heuristics common in theorem provers more exibly, Bundy[Bundy 88] suggests using a meta-logic to reason about and to plan proofs. Proofplans are constructed in the meta-logic by successively applyingmethods to a conjec-ture until a combination of methods has been found that forms a complete plan. Amethod is a partial speci�cation of a tactic [Gordon et al 79] in the following sense:If a sequent matches the input pattern, and the pre-conditions are met, the tactic isapplicable; if the tactic succeeds, the output conditions will be true of the resultingsequents. Explicit proof planning has been implemented inCLAM [Bundy et al 90c],which constructs plans for inductive proofs in a variant of Martin-L�of type theory[Martin-L�of 79]. The plans are executable in Oyster [Bundy et al 90c], a sequent-style interactive proof checker.The advantages of the meta-logic approach are that the search for proofs takesplace at the meta-level rather than the object level. The search is less expensive,since methods capture the e�ects of the corresponding tactics, while avoiding thepossibly considerable cost of executing them. More importantly, however, the meta-level representation of the proof can be augmented with additional information onthe proof to restrict the search space. The information is passed from method tomethod, which gives a global rather than a local view of the proof.Proof planning has concentrated on inductive proofs. The central method for in-ductive proofs is ind strat, a composite method capturing the structure of suchproofs. It is composed of the methods induction, base case, and step case. Theinduction method selects a set of induction variables and an induction scheme fora given conjecture, a step crucial to the success of proof planning. The inductionmethod uses recursion analysis to select an induction. Recursion analysis is a ra-tional reconstruction and extension of the heuristics used in NQTHM to selectinduction variables and schemes [Boyer & Moore 88, Stevens 88, Bundy et al 89].Recursion analysis prefers induction variables that occur in the recursive positionsof the function or relation dominating them (i.e., are smaller in the recursive calls)and which can be rewritten using an axiom or a lemma. It selects a scheme whichcorresponds to the recursion of the dominating function or relation. In essence,recursion analysis is a look-ahead into the rewriting of the step case.The inductionmethod applies recursion analysis to the input sequent. It succeeds2

if the analysis suggests a suitable induction scheme and fails otherwise. For theassociativity of +, for example,8x; y; z: (x+ y) + z = x+ (y + z) (1)recursion analysis using 8x; y: s(x) + y = s(x + y) (2)8x; y: x = y ! s(x) = s(y) (3)suggests structural induction on x. Outputs are the base and step cases for theselected induction. Step cases are annotated for the ripple method (see below).The base case method iterates over a symbolic evaluation method sym eval anda simpli�cation and tautology-checking method elementary.In the step case, the main objective is to rewrite the induction conclusion so thatthe induction hypothesis can be exploited. The step case method applies theripple method to rewrite the induction conclusion and the fertilize methodto exploit the induction hypothesis. The ripple method embodies the ripplingheuristic [Bundy et al 93]. This heuristic uses rewrite rules to eliminate the di�er-ences between the induction hypothesis and the induction conclusion so that theinduction hypothesis can be exploited. The function symbols that appear in theconclusion, but not in the hypothesis, are called wave fronts. Initially, the wavefronts immediately dominate the induction variables. The role of rippling is tomove them outwards|just like ripples on a lake|until a perfect reection of theinduction hypothesis is left. The rippling heuristic has been shown to terminate[Bundy et al 93, Basin & Walsh]. We represent wave fronts as boxes with holes.The holes are indicated by underlinings. For the step case of the proof of (1), theinduction method sets up the annotated sequent(x+ y) + z = x+ (y + z) ` (s(x) + y) + z = s(x) + (y + z) .If we remove the structure in the non-underlined parts of the boxes from the con-clusion, we obtain the skeleton, i.e., a copy of the induction hypothesis.Rippling consists of applying annotated rewrite rules called wave rules. The anno-tations on wave rules ensure that applying a wave rule will move at least one wavefront up in the term tree of the induction conclusion if the annotations in the ruleare compatible with those of the conclusion. The (simpli�ed) schematic format ofa wave rule that moves one wave front isF [S[U]] :) T [F [U]] .The e�ect of applying a wave rule is to move the wave front S on the left-handside outwards past the F and to turn it into a wave front T on the right-hand side,whose position is higher up the term tree. Note that :) indicates rewriting, notimplication. In inductive theorem proving, rippling reasons backwards from theinduction conclusion to the induction hypothesis. Thus, rewrite rules may be basedon equality, equivalence, or implication from right to left. Wave rules based on (2)and (3), for example, are s(M) +N :) s(M + N)s(M) = s(N) :) M = N ,where M and N are free variables. 3

Rippling as presented so far is known as rippling out. It is an extension of theripple-out heuristic developed by Aubin [Aubin 76]. For a complete description ofall variations of rippling see [Bundy et al 93].The fertilization methods exploit the induction hypothesis. If, after rippling, thewave front surrounds the entire induction conclusion (or has disappeared), thestrong fertilization method appeals to the induction hypothesis directly. Ifthe wave fronts do not yet surround the entire induction conclusion, the weakfertilization method uses the induction hypothesis as a rewrite rule.Rippling may terminate before the induction hypothesis can be exploited. We thensay that the rippling is blocked. There are various techniques to unblock the rippling,which modify the conclusion in some way that makes a wave rule or fertilizationapplicable. A common unblocking step is simplifying a wave front.3 Middle-Out Synthesis3.1 Pure Logic ProgramsThe logic programs we synthesize are the completions of a subset of normal programs(see Lloyd [Lloyd 87]), which we call pure logic programs. They are similar topure logic programs as de�ned by Bundy et al in [Bundy et al 90b] and the logicdescriptions of Deville [Deville 90]. Formally, we de�ne them as �nite sets of purelogic program clauses. A pure logic program clause is a closed, typed formula of theform 8x :T: A(x)$ Hwhere x is a vector of distinct variables with types given by T (generally left implicitin the following), A(x) is an atom, called the head of a clause, and H is a Hornbody. A formula H is a Horn body if, in Backus-Naur notation,H ::= A j H1 ^H2 j H1 _H2 j 9x:H ,where A is an atom whose name is a known relation (such as = or 6=) or whosename is among the names of the heads of previously de�ned clauses (including theone being de�ned). An example of a pure logic program is8x; l: member(x; l) $ 9h; t: l = h :: t^ (x = h _member(x; t)) (4)8i; j: subset(i; j) $ i = nil _9h; t: i = h :: t^member(h; j) ^ subset(t; j) . (5)We synthesize pure logic programs because they are a suitable intermediate repre-sentation between non-executable speci�cations and executable programs. In par-ticular, the de�nition of pure logic programs guarantees that8x :T: A(x) Hcorresponds to a set of de�nite program clauses (see Lloyd [Lloyd 87]).The class of pure logic programs is very general: It captures the semantics of purelogic programming languages. It also captures the basic recursive structure of algo-rithms, while avoiding non-logical aspects such as order of execution and non-logicalprimitives, which are normally speci�c to the implementation of a logic program-ming language. This enables us to break down the formidable task of synthesis:First, we synthesize the basic structure of the algorithm, independent of any par-ticular programming language. In a second step, we can translate the pure logic4

` Prog[Base]$ Spec[Base]... symbolic evaluation` Formula1 $ Formula2... simpli�cation` true tautologyFigure 1: Schematic base case in veri�cationprogram into a logic programming language of our choice and introduce non-logicalprimitives as desired. Synthesizing pure logic programs has another advantage:The intended meaning of the program coincides with its logical meaning. Thus, wecan reason within the well-understood framework of (many-sorted) �rst-order logic(with induction) and bring knowledge in theorem-proving to bear.Using pure logic programs, we can prove partial correctness and completeness1 byshowing that A(x) as de�ned by A(x)$ H is equivalent to S8x :T: A(x)$ H ` 8x :T: A(x)$ S ,where A(x) and H are as above and S is the speci�ed relation. The proof ofequivalence is conducted in an appropriate �rst-order theory containing axioms andinduction principles for recursively de�ned data-types. For instance, to verify thesubset program with respect to the speci�cation8x: member(x; i) ! member(x; j) ,we prove, in a standard theory of lists,8i; j: subset(i; j) $ (8x: member(x; i) ! member(x; j)) (6)from the de�nitions (4) and (5). Such proofs underlie our synthesis approach.3.2 Planning Logic Program Veri�cation ProofsTo illustrate veri�cation proof planning, we verify subset, i.e., we prove that thelogic program (5) veri�es conjecture (6). Recursion analysis suggests structuralinduction on i. The base case is` subset(nil; j) $ (8x: member(x; nil) ! member(x; j)) .Symbolic evaluation using the base cases of subset and member yields` true$ (8x: false ! member(x; j)) ,which simpli�es to true. The sequence of symbolic evaluation, simpli�cation, andtautology checking is typical of the base cases of veri�cation proofs (see �gure 1).1In logic programming, partial correctness means that the computed relation is a subset of thespeci�ed relation, completeness that the speci�ed relation is a subset of the computed relation[Clark & T�arnlund 77, Clark 79]. 5

The annotated step case for induction on i is:subset(t; j)$ (8x: member(x; t) ! member(x; j)) ` (7)subset(h :: t ; j)$ �8x: member(x; h :: t)! member(x; j)�To ripple, we need the wave rulessubset(H ::T ; L) :) member(H;L) ^ subset(T; L) (8)member(X; H ::T) :) X = H _member(X;T) (9)P _Q ! R :) P ! R ^Q! R (10)8x: P ^Q :) (8x: P) ^ 8x: Q (11)P ^Q $ P ^R :) Q$ R (12)of which the �rst two are based on (4) and (5) and the remaining three on theoremsof �rst-order logic. The latter are called logical wave rules (see section 5.1).The rippling of the induction conclusion in subset example consists of applying (8){(11) subset(h :: t ; j) $ 8x: member(x; h :: t)! member(x; j)member(h; j) ^ subset(t; j) $ 8x: member(x; h :: t)! member(x; j)member(h; j) ^ subset(t; j) $ 8x: x = h _member(x; t) ! member(x; j)member(h; j) ^ subset(t; j) $8x: x = h! member(x; j) ^member(x; t) ! member(x; j)member(h; j) ^ subset(t; j) $(8x: x = h! member(x; j)) ^ 8x: member(x; t) ! member(x; j)and simplifying the wave front on the right-hand sidemember(h; j) ^ subset(t; j) $member(h; j) ^ 8x: member(x; t)! member(x; j)so that (12) can be appliedsubset(t; j)$ 8x: member(x; t) ! member(x; j) .Strong fertilization completes the proof plan. The sequence of rippling both sidesof the equivalence, applying a wave rule that removes the wave fronts, and strongfertilizing is typical of the step cases of veri�cation proofs (see �gure 2).3.3 From Veri�cation to SynthesisMiddle-out reasoning can be used to turn veri�cation proof planning into synthesisby planning the veri�cation of a program while leaving the program unknown. Westart with a program whose body is represented with a meta-variable. In the courseof planning, the variable becomes instantiated to a program. The planning thus6

Prog[Arg]$ Spec[Arg] ` Prog[Constr[Arg]]$ Spec[Constr[Arg]]... ripple under equivalenceProg[Arg]$ Spec[Arg] ` Front[Prog[Arg]] $ Front[Spec[Arg]]... �nal rippleProg[Arg]$ Spec[Arg] ` Prog[Arg]$ Spec[Arg]strong fertilizationFigure 2: Schematic step case in veri�cationresults both in an instantiation of the program body and a plan for the veri�cation ofthat program. If the plan executes successfully, the synthesized program is partiallycorrect and complete.Representing the program body with a meta-variable entails a loss of information,which a�ects the proof planning. In the veri�cation proof above, there were anumber of steps that depended on the program, but also some that did not. Inparticular, the symbolic evaluation of subset in the base case and the ripple withthe subset wave rule (8) depend on the program. The main di�erence betweenveri�cation and synthesis planning is that in veri�cation, the two types of stepstend to be interleaved. In synthesis, the part of the proof that does not dependon the program is planned �rst, and any step that does is postponed as long aspossible. This is because, in synthesis, any step that depends on the programpartially instantiates, i.e., commits the program. Postponing such steps is a leastcommitment strategy.To illustrate this, we redo the step case of the veri�cation proof in section 3.2,omitting any steps that depend on the program. This rules out rippling with thesubset wave rule (8). The rippling progresses as follows, using wave rules (9){(11)and unblocking.subset(h :: t ; j) $ 8x: x = h _member(x; t) ! member(x; j)subset(h :: t ; j) $ 8x: x = h! member(x; j) ^member(x; t)! member(x; j)subset(h :: t ; j) $(8x: x = h! member(x; j)) ^ 8x: member(x; t)! member(x; j)subset(h :: t ; j) $ member(h; j) ^ 8x: member(x; t)! member(x; j)The lack of wave rule for subset now prevents us from further rippling. However,we can apply weak fertilization: We use the induction hypothesis (7) as a rewriterule. This yields subset(h :: t ; j)$ member(h; j) ^ subset(t; j) .Now we have applied all possible steps that do not depend on the program. Infact, the residual conjecture is precisely the part of the proof that in a veri�cation,would have been proved using the subset wave rule (8). It is thus the step clauseof our program. By appealing to the as yet uninstantiated program, we commit itto correspond to this residual conclusion. The details of this process are presentedbelow. Figure 3 shows schematically how a typical step case of a synthesis proof7

Prog[Arg]$ Spec[Arg] ` Prog[Constr[Arg]]$ Spec[Constr[Arg]]... ripple under equivalenceProg[Arg]$ Spec[Arg] ` Prog[Constr[Arg]]$ Front[Spec[Arg]]... weak fertilizationProg[Arg]$ Spec[Arg] ` Prog[Constr[Arg]]$ Front[Prog[Arg]]appeal to programFigure 3: Schematic step case in synthesis` Prog[Base]$ Spec[Base]... symbolic evaluation, simpli�cation` Prog[Base]$ Formulaappeal to programFigure 4: Schematic base case in synthesisprogresses: The speci�cation side of the induction conclusion is rippled until weakfertilization is possible, and the proof is completed by appealing to the program.The base case is similar. In synthesis, only the speci�cation side is symbolicallyevaluated and simpli�ed, and the residual conclusion corresponds to part of theprogram (see �gure 4).3.4 An Example SynthesisWe synthesize the program we veri�ed in section 3.2. The subset program is now8i; j: subset(i; j) $ P(i; j) ,where P is the meta-variable that represents the program body. We again do struc-tural induction on i. The type of induction immediately determines the recursivestructure of the program. Each induction scheme is associated with the correspond-ing recursive structure, and the program body is uni�ed (see section 4.2) with thisstructure 8i; j: subset(i; j) $ i = nil ^ B(j) _ (13)9h; t: i = h :: t^ S(h; t; j) .The base case for induction on i is` subset(nil; j) $ (8x: member(x; nil) ! member(x; j)) .Symbolic evaluation using the base case of member and simpli�cation yield` subset(nil; j) $ true . (14)8

We are now left with what will become the base case of the program. By appealingto the as yet uninstantiated program de�nition, we complete the base case of theproof and at the same time instantiate the base case of the program. This is doneby the synthesis method. To appeal to the program (13), the synthesis methodinstantiates it appropriately and simpli�es itsubset(nil; j) $ nil = nil ^ B(j) _9h0; t0: nil = h0 :: t0 ^ S(h0; t0; j)subset(nil; j) $ B(j) . (15)The conclusion (14) and the program (15) are uni�ed (see section 4.2), which yieldsthe instantiation �u: true for B and completes the base case. The (normalized)partially instantiated program so far is thus8i; j: subset(i; j) $ i = nil ^ true _ (16)9h; t: i = h :: t^ S(h; t; j) .In section 3.3, we showed that the residual conclusion in the step case issubset(h :: t] ; j)$ member(h; j) ^ subset(t; j) . (17)We must establish that this follows from the program de�nition. The synthesismethod instantiates (16) appropriately and simpli�es itsubset(h :: t; j) $ h :: t = nil ^ true _9h0; t0: h :: t= h0 :: t0 ^ S(h0; t0; j)subset(h :: t; j) $ S(h; t; j) . (18)Unifying (see section 4.2) the conclusion (17) (with annotations removed) and theprogram (18) instantiates S with �u; v; w: member(u;w) ^ subset(v; w) and com-pletes the step case. We get the (normalized) fully instantiated program8i; j: subset(i; j) $ i = nil ^ true _9h; t: i = h :: t^member(h; j) ^ subset(t; j) .3.5 Auxiliary SynthesesIn the course of a synthesis, we need to prevent a meta-variable from becoming in-stantiated with a program body that violates the de�nition of pure logic programs(see section 3.1). Instead of directly checking the instantiation, Periwinkle parsesthe program on completion of a synthesis, marking any subformulae that violate thesyntactic restrictions on pure logic programs. The universal closure of each suchsubformula is taken as the speci�cation for an auxiliary synthesis. In the initialprogram, any subformula for which an auxiliary synthesis was run is substitutedwith a call to the corresponding auxiliary predicate, and all auxiliary predicates areadded to the program. Note that an auxiliary synthesis may require further auxil-iary syntheses. Though the process is not guaranteed to terminate, non-terminationhas not been a problem in practice. An example where an auxiliary synthesis isnecessary is the speci�cation8m; l: max(m; l) $ member(m; l) ^ (8x: member(x; l) ! x � m) ,9

which states that m is the maximum element of l. The synthesized program is8m; l: max(m; l) $ l = nil ^ false _9h; t: l = h :: t^ (m = h ^ (8x: member(x; t)! x � m) _h � m ^max(m; t)) .The subformula 8x: member(x; t) ! x � m violates the de�nition of pure logicprograms, since it contains a universal quanti�er and an implication. The auxiliaryspeci�cation is8m; l: aux(m; l) $ (8x: member(x; l)! x � m) ,which states that m is greater than any element of l. The �nal program is8m; l: max(m; l) $ l = nil ^ false _9h; t: l = h :: t^ (m = h ^ aux(m; t)_h � m ^max(m; t))8m; l: aux(m; l) $ l = nil ^ true _9h; t: l = h :: t^ h � m ^ aux(m; t) .3.6 Related Work in Program SynthesisMost program synthesis approaches have originated in the �eld of functional pro-gramming. There has, however, been increased interest in adapting these tologic program synthesis. For a detailed overview of logic program synthesis, see[Deville & Lau 94].Fribourg [Fribourg 90] and Wiggins [Wiggins 92] both adapt the proofs-as-programsapproach to logic program synthesis. Fribourg, however, uses 89 speci�cations.The synthesized programs are thus not truly relational. Wiggins develops a syn-thesis logic for relational program synthesis with a decidability operator, imple-mented in a system called Whelk. Both systems are interactive. LOPS [Bibel 80,Bibel & H�ornig 84] transforms �rst-order speci�cations into logic clauses. LOPSalso uses 89 speci�cations and thus is not really relational. The semi-automaticsystem of Lau and Prestwich [Lau & Prestwich 88, Lau & Prestwich 90] is basedon unfold/fold transformations of logic programs. Our approach synthesizes trulyrelational programs, like Wiggins and Lau and Prestwich, and unlike Fribourg andLOPS. It is also fully automatic. A more detailed comparison of our approach withthose of Wiggins and Lau and Prestwich follows.The emphasis in Whelk [Wiggins 92] is to develop a logic in which relational pro-grams can be synthesized via proofs-as-programs-style extraction. Thus, in theWhelk system, synthesis takes place at the object level, not the meta-level, andcorrectness and executability are ensured in the object-level logic. By contrast,we synthesize and ensure executability at the meta-level, while establishing partialcorrectness and completeness by a veri�cation proof at the object level. The di�er-ence between the two approaches lies in emphasis. While the Whelk project focusesmore on the logical issues of logic program synthesis, we have put more emphasis onautomation. We have therefore chosen as our object-level logic a well-understoodformal system, i.e., many-sorted �rst-order logic with induction, and have takena perhaps pragmatic approach by using middle-out reasoning for synthesis and byensuring executability using extralogical means. In the Whelk project, on the otherhand, a special logic with a decidability operator was developed to synthesize guar-anteed executable programs, while automation was a secondary priority.10

The proof planning system CLAM is currently being adapted to plan proofs in theWhelk logic. The techniques developed here will be directly applicable, in particularmiddle-out induction (see section 4) and extensions to rippling (see section 5). Onthe other hand, results in the Whelk logic could be used to ensure executability atthe meta-level without extra-logical means, thus improving our handling of auxiliarysyntheses.The system of Lau and Prestwich [Lau & Prestwich 88, Lau & Prestwich 90] issemi-automatic and unfold/fold-based. It synthesizes partially correct, but notnecessarily complete programs. It solves a synthesis problem by bringing it into anormal form and decomposing it top-down into subproblems until the subproblemsare easily solved. The program is then composed bottom-up from the solutions ofthe subproblems. User interaction is required to limit the search space by specifyingthe desired recursive calls of the program and by deciding which subproblems tosolve. The main strategies are de�nition, implication and matching. The de�nitionstrategy selects a de�nition and uses the if part of the de�nition to unfold and theonly if part to fold. The implication strategy exploits known recursive implications.The match strategy solves trivial folding problems.The subset example is taken from [Lau & Prestwich 88]. It is thus a good candidatefor comparison. The input to the system of Lau and Prestwich are the subsetspeci�cation, the de�nition of member, and a goal specifying the initial unfold/foldproblem. The de�nition strategy is applied twice, which results in two subproblems.The �rst is solved with the implication, the second with the match strategy. Thereare no remaining subproblems, and the solution can be composed. This involves theactual unfolding and folding, interleaved with steps to bring intermediate formulaeinto various types of normal forms. Setting the initial fold problem corresponds toselecting the type of induction. The initial unfolding then corresponds to induction,and the last folding to fertilization. The remaining decomposition, normalizing andcomposition steps correspond to rippling. In fact, we believe that approach of Lauand Prestwich could be improved by exploiting rippling to guide the folding. Thiswould obviate the need for normal forms.Lau and Prestwich synthesize partially correct, but not necessarily complete pro-grams, whereas we insist on both partial correctness and completeness. Not requir-ing completeness has the advantage that the body of the program being synthesizedcan be strengthened. Although strengthening allows greater exibility in synthesis,it also increases the search space, which in Lau and Prestwich's work, translates intoa need for user interaction. Nevertheless, our approach could well bene�t from thestrategies of Lau and Prestwich that strengthen formulae to allow folding. This maywell be essential when synthesizing larger, more complex programs, or synthesizingprograms from partial speci�cations.4 Middle-Out InductionDetermining the appropriate type of induction for a given conjecture is a di�culttask. The most widely used technique is recursion analysis (see section 2). However,recursion analysis works poorly in the presence of existential quanti�ers, which arisein 89 speci�cations of functions. This is because the appropriate induction schemeis bound to the recursion scheme of the witnessing function|which is precisely whatwe want to synthesize and therefore do not know. Using an inappropriate inductionscheme may make it di�cult to �nd a proof and may lead to an unintuitive orine�cient program. 11

An example where recursion analysis breaks down is quotient remainder8x; y: 9q; r: x 6= 0 ! q � x+ r = y ^ r < x .Only x and y are available as induction variables, and given the standard de�nitionsof �, +, and <, recursion analysis cannot �nd the appropriate induction, which isinduction on y, where the induction term is y + x.Recursion analysis works better for the relational conjectures in our approach. Theconjecture for a quotient remainder relation qr is8x; y; q; r: qr(x; y; q; r) $ q � x+ r = y ^ r < x ,where qr is unde�ned. Since the conjecture is universally closed, we can chooseany of x, y, q, and r as induction variables, not only x and y. Hence, recursionanalysis stands a better chance of success. For this conjecture, recursion analysisdoes suggests an appropriate induction: one-step structural induction on q.However, recursion analysis is always limited to �nding a type of induction basedon the recursion schemes present in the speci�cation or in given lemmas. Even forrelational conjectures, the recursion of the program may not be among them. Anexample of this is the conjecture8x: even(x) $ (9y: y � s(s(0)) = x) ,where even is unde�ned. The natural recursion of the program is two-step recursion,which is not suggested by the standard de�nition of �. Therefore, we need a morepowerful technique.Middle-out reasoning can provide such a technique. It can be used to postpone the�rst, crucial step in the planning of inductive proofs, namely the selection of aninduction. This was �rst suggested by Bundy et al [Bundy et al 90a], but had notbeen elaborated or implemented. Using meta-variables, we can set up a schematicstep case representing many possible inductions. This is achieved by using meta-variables to represent constructors applied to potential induction variables in theinduction conclusion. We can then ripple this schematic step case. The applicationof wave rules successively instantiates the meta-variables. Once fertilization hastaken place, the meta-variables are fully instantiated and correspond to a type ofinduction. We do need to ensure that the induction is a valid one, i.e., that theinduction ordering is well-founded. The most general approach would be to provethat the order is in fact well-founded. This is a di�cult task, undecidable in general.We currently use a simpler approach, which is to check whether the ordering isamong a set of orderings known to be well-founded. Once we have determined thatthe induction is valid, we can set up the corresponding base cases and complete theproof using standard proof planning methods.Middle-out induction has two main advantages over recursion analysis: First, it isa more general approach. It can �nd an appropriate induction even in cases whererecursion analysis fails. Second, recursion analysis essentially performs a look-aheadinto the rippling process, whereas middle-out induction requires no such look-ahead.However, there are two problems to overcome in middle-out induction: It requiressome kind of higher-order uni�cation, and rippling is no longer terminating. Theseproblems are discussed below. 12

4.1 An Example Synthesis with Middle-Out InductionWe present a variation of the even speci�cation above2. The conjecture is8x: even(x) $ (9y: double(y) = x) ,where double is de�ned as double(0) = 08x: double(s(x)) = s(s(double(x))) .The wave rules for double and the replacement axiom for s aredouble(s(U)) :) s(s(double(U))) (19)s(U) = s(V) :) U = V . (20)The schematic step case iseven(x) $ (9y: double(y) = x) ` (21)even(C(x))$ �9y: double(y) = C(x) �where C is the meta-variable standing for the constructor applied to the potentialinduction variable, and the dashed boxes indicate potential wave fronts, i.e., C maybe instantiated to some function which becomes the wave front or to the identityfunction �x: x. The latter means that there is no wave front. Initially, no wave ruleapplies. To make a wave rule applicable, we need to introduce a case split on theexistential variable y. This is done by the unrolling method, which is presentedin detail in section 5.2. Unrolling on y yieldseven(C(x))$ double(0) = C(x) _ 9y0: double(s(y0)) = C(x) .Applying wave rule (19) results ineven(C(x))$ double(0) = C(x) _ 9y0: s(s(double(y0))) = C(x) .Applying wave rule (20) twice then results ineven(s(s(C00(x))))$ double(0) = s(s(C00(x))) _ 9y0: double(y0) = C00(x) .We can simplify and weak fertilize, i.e., apply the induction hypothesis (21) as arewrite rule. This yields even(s(s(x))) $ even(x) .Weak fertilization instantiates C to �u: s(s(u)). The step case and the base casesare now completed as described in section 3.2We use the variation here because Periwinkle fails on the original, but succeeds for the varia-tion. Though it does �nd the appropriate induction in the original, i.e., two-step induction on x,it fails on the auxiliary synthesis in the second base case8x: auxeven(x) $ (9y: y � s(s(0)) = s(0)) ,since it is not yet able to simplify 9y: y � s(s(0)) = s(0) to false.13

4.2 Uni�cationSince we use higher-order meta-variables in our middle-out reasoning, we are con-fronted with the problem of higher-order uni�cation, which is only semi-decidable.Moreover, there is no unique most general uni�er of higher-order terms. Whenusing higher-order terms, therefore, one either accepts this and uses, for instance,the procedure of Huet [Huet 75], combined with backtracking over or selection ofpossible uni�ers, or one uses a restricted subset of higher-order terms with tractableuni�cation, e.g., higher-order patterns. The former approach has been taken, forinstance, by Hesketh [Hesketh 91] and Ireland [Ireland 92]. The latter approach istaken here.Higher-order patterns [Miller 91, Nipkow 91] are expressions whose free variableshave no arguments other than bound variables. Formally, following [Nipkow 91],\a term t in �-normal form is called a (higher-order) pattern if everyfree occurrence of a variable F is in a subterm F (u1; : : : ; un) of t suchthat each ui is �-equivalent to a bound variable and the bound variablesare distinct."Higher-order patterns are akin to �rst-order terms in that uni�cation is decidableand there exists a unique most general uni�er of uni�able terms.We have restricted ourselves to higher-order patterns for the terms in which we usemeta-variables because they fall naturally into the class of higher-order patterns.For synthesis proper, we are creating programs that represent relations and thatare therefore developed in the context of a collection of universally bound variables.The distinctness requirement is already satis�ed by the de�nition of pure logic pro-grams. Thus, what we start out with as our program is already a higher-orderpattern. Any step that further instantiates the higher-order pattern does so viauni�cation with another higher-order pattern. For middle-out induction, we usemeta-variables to represent the constructor function applied to the induction vari-able. Since the variable on which we induce must be universally bound to beginwith, the expressions we obtain are again higher-order patterns. Furthermore, theinstantiation of the meta-variables occurs via the application of wave rules, whichare also higher-order patterns.4.3 A More General Representation of the Step CaseThe representation of the schematic step case used above does not cover morecomplex induction schemes where the induction term for a variable refers also toother variables. This is the case, for instance, in the quotient remainder example8x; y; q; r: qr(x; y; q; r) $ q � x+ r = y ^ r < x ,where the induction term for y is y + x. Above, we represented the inductionterm for a variable with a meta-variable applied to the variable, e.g., D(y) fory. Since the potential induction variables are bound, the instantiation of D(y)cannot refer to the variables x, q, or r. To allow this, we must generalize therepresentation of the schematic step case by representing the induction term fora potential induction variable as an application of a meta-variable to all potentialinduction variables. Thus, the induction term for y is represented as D(x; y; q; r),14

which, properly annotated, becomes D(x; y; q; r) . The schematic step case is thenqr(x; y; q; r)$ q � x+ r = y ^ r < x `qr(C(x; y; q; r) ; D(x; y; q; r) ; E(x; y; q; r) ; F(x; y; q; r))$E(x; y; q; r) � C(x; y; q; r) + F(x; y; q; r) = D(x; y; q; r) ^F(x; y; q; r) < C(x; y; q; r) .While dealing with this representation is not a problem for Periwinkle, it is notparticularly �t for human consumption. The implementation supports both thesimpler representation in section 4.1 and the more complex representation here.4.4 Controlling RipplingTwo of the main advantages of rippling are that it gives a tight control on rewritingand that it terminates. The termination proof [Bundy et al 93, Basin & Walsh]makes some restrictions, i.e., existential rippling (see section 5.2) and meta-variablesare excluded, precisely because they can lead to non-termination. Since middle-outsynthesis and induction require meta-variables, we must contend with the possibilityof non-termination and devise strategies to avoid it.Non-termination is in fact more likely than not in rippling in middle-out induction.In terms of the rippling search tree in the schematic step case, where each nodecorresponds to the application of a wave rule, we can di�erentiate between two basictypes of non-termination: Non-termination in success branches and non-terminationin failure branches.Non-termination in success branches can be avoided by distinguishing betweenspeculative and non-speculative steps. Applying a wave rule to potential wavefronts only, for instance, is a speculative step. Fertilization and applying a waverule to at least one de�nite wave front are non-speculative steps. By preferringnon-speculative to speculative steps, non-termination on success branches can beavoided. However, this does not avoid non-termination in failure branches. If therewere always at least one success branch in the rippling search tree, breadth-�rstsearch would solve the problem. Unfortunately, however, this is not the case. Asimple example of a rippling search tree with failure branches only is a variant ofthe associativity of plus3 8x: x+ (x+ x) = (x+ x) + x .To avoid non-termination in failure branches, we allow only one speculative step,which can be a speculative ripple or an unrolling step (see section 5.2), and thenripple while trying to fertilize as soon as possible. This does mean that Periwinklecannot �nd a proof for theorems which depend on more than one speculative ripple.This is in fact rare, so that it does not appear to be a severe limitation.4.5 Related Work in Selection of Induction SchemesThere has been little work on techniques to select induction schemes be-yond recursion analysis, except within the framework of the Inka theorem-prover [Biundo et al 86], a theorem prover based on resolution and rippling withdestructor-style induction.3Here, we would need to generalize before doing induction. In the ordering of methods, however,induction comes before generalization, and the depth-�rst planner will select induction. Thisparticular example can be solved by a best-�rst planner with an evaluation function to determinewhether induction or generalization should be preferred (see Manning [Manning 92]).15

The synthesis system of Biundo [Biundo 88] applies a heuristic called most-nestedfunction to speci�cations in the form of skolemized 89 formulae. A most-nestedfunction is one that occurs at an innermost position in the speci�cation. The recur-sive arguments of the most-nested function are selected as the induction variables,and the recursion of the most-nested function as the type of induction. The recur-sive arguments of the most-nested function should also be among the set of variablesthat are arguments of the skolem function. The type of recursion of the programwill then correspond to the type of recursion of the most-nested function. Whilethis heuristic is su�cient for some simple examples, it performs as poorly as recur-sion analysis in more complex examples. For example, for the (skolemized) quotientremainder speci�cation from [Biundo 89]8x; y: y 6= 0! plus(times(car(f(x; y)); x); cdr(f(x; y))) = y ^ cdr(f(x; y)) < x ,the heuristic selects structural induction on y. While the system does �nd a proof,the resulting program is unintuitive and ine�cient.Protzen [Protzen 94] presents a calculus for constructing induction proofs withoutcommitting to an induction scheme at the outset. The ideas are closely related toour middle-out reasoning approach, �rst presented in [Kraan et al 93b], except thatthey are couched within a destructor style setting and a specialized proof system.The idea is to generate induction hypotheses by rewriting the induction conclusionuntil all structure introduced by the rewriting is in tolerable positions, i.e., surroundsthe conclusion or potential induction variables. Tolerable positions basically corre-spond to our meta-variables. Additionally, Protzen's calculus forces the inductionhypotheses to be smaller relative to a well-founded ordering. The approach has not,to the best of our knowledge, been fully implemented yet. We have two concernswith Protzen's techniques. First, in our experience, the search space in such proofsis very large and rather sensitive to how the rewriting is constrained. Hence carefullydesigned search control is essential, and it is likely that, in practice, Protzen willhave to introduce heuristics to restrict the search to have a usable system. Second,it is not clear whether the approach applies to universally quanti�ed conjecturesonly or also to existentially quanti�ed and synthesis conjectures.Hutter [Hutter 94] suggests a technique to select induction schemes for 89 for-mulae which exploits the close relationship between the induction variables, theinstantiation of existential variables and the type of induction. Instead of selectinginduction variables and the type of induction and then �nding instantiations of ex-istential variables, Hutter picks induction variables and instantiations of existentialvariables, leaving the type of induction to be determined in the course of the proof.Hutter's approach involves two steps: First, the selection of an induction variableand an existential variable and second, the selection of the induction scheme. Theselection of the pair of variables is done in a preprocessing step bearing some sim-ilarity to recursion analysis. First, all available wave rules are abstracted in thatthe only information retained is the dominating function symbol and the directionin which the wave front moves|up, down, or across. These abstracted rules arecalled labeled fragments. The term tree of the conjecture is then searched to �nd apath of labeled fragments such that all instances of a universal and an existentialvariable are connected, but none of the fragments overlap. Such a path ensuresthat there is wave rule that can move a wave front in the desired direction at everyrelevant node. It does not consider the actual form of the wave front, however.Once the variables have been selected, the actual proof is carried out. In the basecase, the existential variable is instantiated to the base of the corresponding type.Then, symbolic evaluation is applied. The remaining formula is assumed as thecondition of the base case, which completes its proof. The negation of this formulabecomes the condition of the step case. In the step case, the existential variable16

is again instantiated, now to the compound case of the type, and the conclusionis rippled. Once the rippling has terminated, the structure that has accumulatedaround the induction variable determines its predecessor. As in our approach, thewell-foundedness of the induction order remains to be established. To the best ofour knowledge, the approach has not yet been implemented.Hutter's approach and ours are related. Both rely on the rippling of the stepcase to determine the type of induction. Both require a certain amount of search,Hutter's in the preprocessing step, ours in the rippling. The main di�erence liesin the fact that Hutter's approach is divided into two steps. The preprocessingcorresponds to a lookahead into the rippling, albeit a simpli�ed version. The trade-o� between our one-step and Hutter's two-step approach is thus that Hutter's doessome of the search in a simpli�ed setting, which reduces the amount of search inthe actual rippling, but involves some duplication of e�ort. We search in the actualrippling, which is more expensive, but we have no duplication of e�ort. Finally, thepreprocessing step of Hutter simply fails if a lemma is missing, since it cannot �nda path. This would pose a serious problem in proofs requiring propositional waverules, when, as in our system, these wave rules are generated on demand.5 Extensions to RipplingSynthesizing logic programs is a new application of proof planning and poses newproblems to the proof planner. While many of them are speci�c to program syn-thesis, some of them can occur in proof planning in general. Methods developed tosolve these more general problems are presented together in this section.5.1 Generating Logical Wave RulesInitially, Periwinkle used a library of around sixty wave rules based on schematiclemmas about logical connectives. Rules (10) and (11) in section 3.4 are examples ofsuch rules. Considering the large number of such wave rules, it would be preferablefor Periwinkle to recognize the need for one and generate it on demand. A methodthat does this has been implemented for a large subclass of logical wave rules, i.e.,wave rules expressed in terms of propositional connectives only. Wave rule (10) ispropositional, whereas wave rule (11) is not, since it involves quanti�ers.The idea underlying the generation of propositional wave rules is that we can con-jecture a partially speci�ed lemma that gives rise to the desired wave rule. We thentry to �ll in the missing part of the lemma by generating the truth table for thatpart and �nding a formula that satis�es that truth table. In the conclusion: : :$: x = h _member(x; t) ,for instance, the rippling is blocked. To ripple the right-hand side further, we needa wave rule that pushes the negation down over the disjunction. The wave rule wewant is thus of the form : P _Q :) F(:Q) ,based on a lemma :(P _Q)$ F(:Q) ,where F represents the unknown part. We need to �nd an expression F with thesame truth values as :(P _ Q) containing a subterm :Q. We proceed as follows:First, we try the simple cases: :Q itself and its negation ::Q. This fails, and17

we create a set of candidate expressions whose top-level connective is some binaryconnective, with :Q as its �rst argument and an unknown expression E as its secondargument. In this example, we consider only conjunction and disjunction, thoughthe implementation also considers equivalence and implication. We construct thecandidate expressions and derive the truth tables for the second argument of thetop-level connective. The truth table for E in :Q _E isP Q :(P _Q) :Q ET T F F FT F F T XF T F F FF F T T T=Fand the truth table for E in :Q ^E isP Q :(P _Q) :Q ET T F F T=FT F F T FF T F F T=FF F T T TIn the column for E, T indicates that E must be true for the given values ofthe variables P and Q, F that E must be false, and T=F that E may be eithertrue or false. The symbol X indicates a conict; no possible value is logicallyconsistent. Any formula with a conict is discarded. We try to complete thesurviving candidates by �nding a variable or a negation of a variable that satis�esthe derived truth table. In this example, the truth table for :Q ^ E is satis�edby :P . If no (negated) variable had satis�ed the truth table for E, we wouldhave constructed more complex expressions using binary connectives. To cut downon the search space, we restrict the �rst argument of any binary connective to apropositional variable or its negation, but allow the second argument to be furtherexpanded.This straightforward approach to generating propositional wave rules su�ced togenerate all propositional wave rules in our original database. However, it is notclear whether it is complete. The problem lies in the syntactic restrictions that weremade to cut down the search space, and the question is whether there are wave rulesthat cannot be expressed in the restricted syntactic form.5.2 Existential Rippling and UnrollingRippling as portrayed in section 2 applies to theorems containing universal quan-ti�ers only, and cannot cope with existential quanti�ers. To allow a wave rule toapply to existential variables, we introduce existential versions of wave rules. Inessence, what an existential wave rule does is to partially instantiate an existentialvariable to a wave term. A simple wave rule of the formF [S[U]] :) T [F [U]]can be turned into an existential wave rule9 u :G[F [u]] :) 9 u0 :G[T [F [u0]]] .To indicate that existential variables can be instantiated to wave terms, they areannotated with potential wave fronts, represented as dashed boxes.18

There is a problem when applying existential rippling in logic program synthe-sis. Wave rules used to rewrite subexpressions of equivalences must be based onequivalence or equality. Unfortunately, existential versions of wave rules are notnecessarily equivalence-preserving. An example where the existential wave rule isnot equivalence-preserving is the synthesis conjecture that a list k occurs at theback of a list l 8k; l: back(k; l) $ 9x: app(x; k; l) .Applying structural induction on l yields the step case8k: back(k; h :: t)$ 9 x : app(x ; k; h :: t) . (22)Now, we would like to apply the wave ruleapp(H1 ::T1 ; L; H2 ::T2) :) H1 = H2 ^ app(T1; L; T2) (23)in its existential version9 x : app(x ; L; H ::T) :) 9 x1 : 9 x2 : x1 = H ^ app(x2 ; L; T) . (24)While the lemma underlying (23)8h1; t1; l; h2; t2: app(h1 :: t1; l; h2 :: t2)$ h1 = h2 ^ app(t1; l; t2)holds, the equivalence that would justify (24)8l; h; t: (9x: app(x; l; h :: t))$ (9x1; x2: x1 = h ^ app(x2; l; t))is a non-theorem (The left side is true, but the right side false for l = h :: t).Thus, before we apply an existential version of wave rule, we must establish thatit is equivalence-preserving. (Dis-)Proving the underlying lemma, however, is adi�cult and expensive task and requires the full power of proof planning. Insteadof implementing a method for equivalence-preserving existential rippling, we havedeveloped a less expensive and more generally applicable alternative, unrolling.In the step case (22), with (23) as the only available wave rule, rippling is blockedfrom the outset by the existentially quanti�ed variable x. Applying wave rule (23)is clearly what is called for. For that, x must be brought into the form x1 ::x2 .This can be done by introducing an appropriate case split, i.e., one where one ofthe cases is x = x1 ::x2. The case split that lends itself is the one where x is eitherthe empty or a composite list.When we apply the case split, we must preserve the skeleton of the conclusion andput any additional structure introduced by the case split into a wave front. This isachieved by annotating the case split accordingly. Schematically, a case split on xin 9x :nat: P (x) is annotated asP [0]_ 9x :nat: P [s(x)] .In the back example, introducing a case split on x leads to the conclusion8k: back(k; h :: t)$ app(nil; k; h :: t)_ 9x1: 9x2: app(x1 ::x2 ; k; h :: t) ,19

to which wave rule (23) applies, yielding8k: back(k; h :: t)$ app(nil; k; h :: t)_ 9x1: 9x2: x1 = h ^ app(x2; k; t) .The step case can be completed with a further ripple and weak fertilization.Currently, only case splits on the structure of recursive data types are considered,both for existential and universal quanti�ers. The method can be extended to covermore complex case splits.Unrolling is a speculative step and can cause non-termination. It is therefore con-trolled in the same way as speculative rippling (see section 4.4). It is worth notingthe relationship between equivalence-preserving existential rippling and unrolling.Applying an equivalence-preserving existential wave rule to a conclusion9y :nat: P (s(x) ; y)yields a conclusion 9y0 :nat: F (P (x; y0)) . (25)Unrolling initially yieldsP (x; 0)_ 9y0 :nat: P (s(x) ; s(y0) .Because the existential rewrite was equivalence-preserving, the case P (x; 0) mustbe false. Thus, after we simplify the wave front and apply the original version ofthe wave rule, we also obtain (25).5.3 Very Weak FertilizationThe techniques presented so far are mainly devised to allow rippling to continue. Insome cases, however, the blockage does not prevent further rippling, but fertilization.Very weak fertilization is a method that recognizes one particular type of blockagethat occurs frequently when synthesizing relations from functions. It exploits theinduction hypothesis in a way that takes the blockage into account. Very weakfertilization applies in particular in cases where we would like to weak fertilize, butwe cannot because the corresponding side of the conclusion is an equality that is notyet fully rippled. A simple example where this occurs is the synthesis of a reverserelation from a reverse function8k; l: rrev(k; l) $ frev(k) = l ,where frev is de�ned as frev(nil) = nil8h; t: frev(h :: t) = app(frev(t); h ::nil) .From the frev de�nition, we get the wave rulefrev(H ::T) :) app(frev(T);H ::nil) . (26)By structural induction on k, we obtain the step case8l: rrev(t; l)$ frev(t) = l ` 8l: rrev(h :: t ; l)$ frev(h :: t) = l20

Applying wave rule (26) yieldsrrev(h :: t ; l)$ app(frev(t); h ::nil) = l .The rippling is now blocked. However, the wave hole on the right-hand side of theequivalence, i.e., frev(t), is identical to the left-hand side of the equation on theright-hand side of the equivalence of the induction hypothesis. Thus, if we can pullthe wave hole out of its nested position and into an equality, we can weak fertilize.This can be achieved by introducing a new existential variable as a placeholder forthe wave hole and adding the equality between the new variable and the wave hole.Schematically, this corresponds to applying the rewrite�((x)) = y :) 9y0: �(y0) = y ^ (x) = y0 (27)which is not quite a wave rule because it does not entirely preserve the skele-ton. The skeleton of the left-hand side is (x) = y, that of the right-hand sideis (x) = y0, where y0 is a bound variable. The notion of rippling is currentlybeing extended to allow such rules as wave rules as well (see Bundy and Lombart[Bundy & Lombart 95]).In the example, using the existential variable l0, this yieldsrrev(h :: t ; l)$ 9l0: app(l0; h ::nil) = l ^ frev(t) = l0 .We can now exploit the induction hypothesis, since l, the variable corresponding tol0 in the hypothesis, is universally quanti�ed. We rewrite the conclusion torrev(h :: t ; l)$ 9l0: app(l0; h ::nil) = l ^ rrev(t; l0) .Very weak fertilization solves a problem that arises in reasoning about relationsrather than functions. The need for this technique stems from the fact that we aresynthesizing a relational program from a non-tail-recursive function. The recursivecase of the reverse function frev is non-tail-recursive, i.e., its value is de�ned by afunction applied to the result of the recursive call. The at structure of relationsmakes such a nesting in the corresponding relation impossible. In the relationalcase, such nestings can only be expressed by having the corresponding relationsshare existential variables. Thus, to make progress in the synthesis of a relation, itis necessary to unpack the nesting of functions by introducing existential variables.6 Implementation and Results6.1 ImplementationPeriwinkle is an adaptation and extension of the CLAM -Oyster system[Bundy et al 90c]. CLAM was designed as a planner to plan inductive proofs in typetheory. Recently, however, there has been an increased interest in using CLAM forother types of proofs, logics, and proof-checkers, and there is an ongoing e�ort intomaking CLAM less logic-dependent. At the object level, Oyster is being replacedby an interactive proof checking shell Mollusc [Richards et al 94], which, given aspeci�cation of a logic, becomes a proof checker for that logic. Using Mollusc, weimplemented a proof checker for many-sorted �rst-order predicate logic with equal-ity and induction, following the Gentzen System G= from [Gallier 86] and addingappropriate induction rules. 21

At the planning level, CLAM needed to be adapted to �rst-order predicate logicwith equality. Beyond the syntax-related adaptations, CLAM was extended in anumber of ways. First, the middle-out reasoning presented here required higher-order pattern uni�cation and a higher-order representation of annotations. Second,we implemented code to handle auxiliary syntheses. Finally, we implemented thenew methods and auxiliary code related to these.6.2 Synthesized ProgramsOne of our aims was to improve on the results achieved by known synthesis sys-tems, particularly in terms of automation and selection of induction schemes. Threeexamples from the literature are of special importance: subset from Lau and Prest-wich [Lau & Prestwich 88], delete from Bundy et al [Bundy et al 90b] and qr fromBiundo [Biundo 89]. For the �rst two examples, the aim was to fully automatethe synthesis, which, in the literature, was semi-automatic or interactive. For thelast example, the aim was to synthesize a better algorithm by �nding a more ap-propriate induction. Periwinkle is able to synthesize good programs for all of thespeci�cations automatically and can thus be considered to have achieved its aims.The problems taken from the literature can be summarized as follows: The subsetexample [Lau & Prestwich 88]8x; y: subset(x; y) $ (8z:member(z; x)! member(z; y))posed the problems of rippling using logical wave rules (see section 5.1) and con-trolling the rippling to avoid non-termination (see section 4.4). While the synthesisrequires three instances of user interaction in [Lau & Prestwich 88], it requires nonein Periwinkle. The delete example [Bundy et al 90b]8x; y; z: delete(x; y; z) $ (9k; l: fapp(k; l) = y ^ fapp(k; x :: l) = z)contains nested quanti�ers which require unrolling (see section 5.2). This example,which had not yet been automated at all, is also done automatically by Periwinkle.A remaining problem with the synthesis of delete is that it requires a lemma aboutthe append function fapp,8k; l: fapp(k; l) = nil $ k = nil ^ l = nil .Finally, the quotient remainder example qr from [Biundo 89]8x; y; q; r: qr(x; y; q; r) $ q � x+ r = y ^ r < xrequires middle-out induction (see section 4) and auxiliary syntheses (see sec-tion 3.5). Biundo's heuristic selects structural induction on y, which leads to anine�cient, unintuitive program. Periwinkle chooses a more appropriate induction,namely one where the induction terms for w and y are s(w) and y+x, respectively,which leads to a simpler, more e�cient program. The synthesis of qr requires threelemmas, the associativity of plus, a variant of the cancellation of plus and a lemmaon < and plus 8x; y; z: plus(x; plus(y; z)) = plus(plus(x; y); z)8x; y; z: plus(x; y) = plus(x; z) $ y = z8x; y; z: (z < x! plus(x; y) = z) $ false .Table 1 gives an overview of other problems solved by Periwinkle. All plans wereconstructed using middle-out induction. For more detail on the speci�cations, pro-grams and proofs, see [Kraan 94]. The examples fall into three categories:22

Name Description Planning Plantime executiontimeadd3 Addition relation for three numbers 9:5 5:8app length Combined length of two lists 10:9 5:8back see section 5.2 14:0 5:6before An element precedes another in a list 39:1 19:2between A number is between two numbers 34:2 4:9delete see above 95:0 31:3even see section 4.1 7:2 4:7insert Insert an element before another in a list 124:8 37:8max see section 3.5 30:4 10:4not member Non-membership in a list 9:1 3:0qr see above 42:1 12:9rapp Append relation 9:4 3:7rplus Addition relation 6:0 3:6rrev see section 5.3 8:4 4:6rtimes Multiplication relation 6:8 5:3subset see above 21:2 5:0Table 1: Programs synthesized by Periwinkle. Planning and plan execution timesare for main syntheses in seconds of CPU time on a Sparc station 10 using QuintusProlog Release 3.1.4.1. Synthesizing relations from functions. Such relational programs have the ad-vantage that they can be run in various modes. Thus, for instance, an additionrelation can also be used for subtraction. Examples programs are rapp, rplus,rtimes and rrev.2. Synthesizing programs from speci�cations containing quanti�ed and negatedrelations. Examples programs are delete, subset and max.3. Synthesizing more e�cient programs from executable but less e�cient pro-grams. An example program is between.It would not be fair to omit examples that we would have liked to synthesize, butfailed to. These include sorting and partitioning lists. The former fails becausePeriwinkle lacks relational rippling (see section 7.3), the latter because Periwinkleis not able to �nd a required case split.7 Future Research7.1 SynthesisThe work in this paper has concentrated on the fully automatic synthesis of recursivelogic programs that are partially correct and complete. The system currently tries to�nd a recursive program, but does not prefer any one type of recursion over another.A useful extension to the system would be to allow the user to specify constraintson the program, for instance by giving the complexity or type of recursion of theprogram, or by requiring that the program be tail-recursive. Allowing the user todetermine the recursive structure of the program would shift the challenge to the23

proof planner from �nding appropriate inductions to �nding wave rules, since theinduction of the proof is determined from the outset.7.2 Middle-Out InductionIn middle-out induction, the instantiation of the meta-variables is used as an indexinto the database of induction schemes. Currently, middle-out induction fails ifthe ordering determined in the rippling is not among the set of known orderings.However, it may be possible to \salvage" the induction. For instance, the orderingmay be a combination of known orderings. Alternatively, there may be an orderingcorresponding to the instantiation of a subset of the meta-variables. In the lattercase, the step case would have to be patched by introducing an appropriate case spliton the non-induction variable. Ideally, however, the proof planner would not haveto rely on a set of known induction schemes, but would use general well-foundedinduction and prove the well-foundedness of the ordering.7.3 Rippling7.3.1 Search ControlThe control of rippling in middle-out induction poses a considerable challenge. Mostimportantly, rippling needs to be controlled so that the search space is kept withinreasonable bounds and non-termination is avoided. In section 4.4, this was achievedby a simple mechanism, i.e., allowing only one speculative step. Although allowingno more than one speculative step ensures termination, it also cuts the search spacedown too far|there are proofs which require more than one speculative step. Anexample requiring two speculative steps is8w; x; y; z: plus(w; x) = plus(y; x) $ plus(w; z) = plus(y; z) .With only one speculative step, a blockage occurs that prevents fertilization. Whatis needed is global control over speculative steps such as speculative rippling, gen-eralization, and lemma conjecturing. Such global control can be provided by theplanning critics of Ireland [Ireland & Bundy], which, given a failed proof planningattempt, analyze it and suggest ways of correcting it. In the case of middle-outinduction, the method and its critic would work together as follows: The methodallows an initial speculative ripple to begin rippling. Then, it allows only de�niterippling and fertilization. If the rippling fails, the critic can analyze the ripplingand suggest the appropriate measure|another speculative ripple, a lemma or ageneralization.7.3.2 Rippling with RelationsThe class of programs we can synthesize so far is limited mainly because ripplingas presented by Bundy et al [Bundy et al 93] is based on nested functions. Theidea of a wave rule is precisely that it moves constructors or functions up froma nested position. To extend the class of logic programs we can synthesize, thenotion of rippling needs to be extended to relations. Relations cannot be nestedlike functions, but a similar e�ect is achieved by existentially quanti�ed variablesthat are arguments of more than one literal. Take, for instance, the step cases ofstandard functional and relational de�nitions of list reversal8h; t: frev(h :: t) = append(frev(t); h ::nil) (28)8h; t: rrev(h :: t; l) $ 9l0: rrev(t; l0) ^ append(l0; h ::nil; l) . (29)24

While (28) gives rise to a wave rulefrev(H ::T) :) append(frev(T);H ::nil) ,(29) currently does not. The rulerrev(H ::T ; L) :) 9l0: rrev(T; l0) ^ append(l0;H ::nil; L)is not a wave rule in the traditional sense because the skeleton of the left-hand side,rrev(T; L), and the skeleton of the right-hand side, rrev(T; l0), are not identical.This \almost" wave rule is very similar to the schematic rewrite (27) in section 5in that they both preserve the skeleton except for the names of bound variables.Such rules are clearly within the spirit of rippling, and the notion of rippling is be-ing extended to cope with them (see Bundy and Lombart [Bundy & Lombart 95]).Relational rippling would enable us to synthesize a large number of programs thatare currently beyond the capabilities of the system.8 ConclusionsIn this paper, we have investigated the application of proof planning to the auto-matic synthesis of logic programs via inductive proofs. The work developed out ofexisting work in middle-out reasoning [Bundy et al 90a] and in proofs-as-programsfor logic program synthesis [Bundy et al 90b]. The main goals were to synthesizerelational programs and to automate the synthesis process. Our work makes fourprincipal contributions:1. We have applied middle-out reasoning to new applications and have shownhow to extend it to overcome related search problems. For example, we showhow search arising in higher-order uni�cation can be restricted by the use ofhigher-order patterns.2. We have shown that middle-out reasoning is a mechanism through which proofplanning can be used to synthesize logic programs fully automatically.3. We have provided evidence that middle-out reasoning provides an elegantand e�ective mechanism to select induction schemes. Middle-out inductionhas made the class of synthesis theorems, for which existing techniques oftenfail, amenable to automatic proof.4. We have provided new techniques for unblocking rippling when the blockageis caused by missing wave rules on propositional connectives or by nestedquanti�ers.Although we are still far away from automatically synthesizing complex programsfrom formal speci�cations, we have made progress towards that goal by automatingsome of the steps that are traditionally considered Eureka steps, and are thereforenormally left to the user. Middle-out reasoning has played a crucial role in thissuccess by providing a elegant framework for speculation, and we believe that itspotential is far from exhausted.AcknowledgementsWe would like to thank Sophie Renault for her careful reading of this paper.25

References[Aubin 76] R. Aubin. Mechanizing Structural Induction. UnpublishedPhD thesis, University of Edinburgh, 1976.[Basin & Walsh] David Basin and Toby Walsh. A calculus for and termina-tion of rippling. JAR (this issue).[Basin et al 93] David Basin, Alan Bundy, Ina Kraan, and Sean Matthews.A framework for program development based on schematicproof. In Proceedings of the 7th International Workshopon Software Speci�cation and Design (IWSSD-93), 1993.Also available as Max-Planck-Institut f�ur Informatik Re-port MPI-I-93-231 and Edinburgh DAI Research Report654.[Bibel & H�ornig 84] W. Bibel and K.M. H�ornig. LOPS | a system based on astrategical approach to program synthesis. In A. Biermann,G. Guiho, and Y. Kodrato�, editors, Automatic ProgramConstruction Techniques, pages 69{90. MacMillan, 1984.[Bibel 80] W. Bibel. Syntax-directed, semantics-supported programsynthesis. Arti�cial Intelligence, 14:243{261, 1980.[Biundo 88] S. Biundo. Automated synthesis of recursive algorithms asa theorem proving tool. In Y. Kodrato�, editor, EighthEuropean Conference on Arti�cial Intelligence, pages 553{8. Pitman, 1988.[Biundo 89] S. Biundo. Automatische Synthese rekursiver Programmeals Beweisverfahren. PhD thesis, Universit�at Karlsruhe,1989.[Biundo et al 86] S. Biundo, B. Hummel, D. Hutter, and C. Walther. TheKarlsruhe induction theorem proving system. In Joerg Siek-mann, editor, 8th Conference on Automated Deduction,pages 672{674. Springer-Verlag, 1986. Springer LectureNotes in Computer Science No. 230.[Boyer & Moore 88] R.S. Boyer and J.S. Moore. A Computational Logic Hand-book. Academic Press, 1988. Perspectives in Computing,Vol 23.[Bundy & Lombart 95] A. Bundy and V. Lombart. Relational rippling: a generalapproach. In Proceedings of IJCAI-95, 1995. To appear.[Bundy 88] A. Bundy. The use of explicit plans to guide inductiveproofs. In R. Lusk and R. Overbeek, editors, 9th Con-ference on Automated Deduction, pages 111{120. Springer-Verlag, 1988. Longer version available from Edinburgh asDAI Research Paper No. 349.[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, andA. Stevens. A rational reconstruction and extension of re-cursion analysis. In N.S. Sridharan, editor, Proceedings ofthe Eleventh International Joint Conference on Arti�cialIntelligence, pages 359{365. Morgan Kaufmann, 1989. Alsoavailable from Edinburgh as DAI Research Paper 419.26

[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka stepsinto calculations in automatic program synthesis. In S.L.H.Clarke, editor, Proceedings of UK IT 90, pages 221{6, 1990.Also available from Edinburgh as DAI Research Paper 448.[Bundy et al 90b] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesisof logic programs from inductive proofs. In J. Lloyd, edi-tor, Computational Logic, pages 135{149. Springer-Verlag,1990. Esprit Basic Research Series. Also available from Ed-inburgh as DAI Research Paper 501.[Bundy et al 90c] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. TheOyster-Clam system. In M.E. Stickel, editor, 10th Inter-national Conference on Automated Deduction, pages 647{648. Springer-Verlag, 1990. Lecture Notes in Arti�cial In-telligence No. 449. Also available from Edinburgh as DAIResearch Paper 507.[Bundy et al 93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, andA. Smaill. Rippling: A heuristic for guiding inductiveproofs. Arti�cial Intelligence, 62:185{253, 1993. Also avail-able from Edinburgh as DAI Research Paper No. 567.[Clark & T�arnlund 77] K. L. Clark and S-�A. T�arnlund. A �rst order theory ofdata and programs. In B. Gilchrist, editor, InformationProcessing, pages 939{944. IFIP, 1977.[Clark 79] K. L. Clark. Predicate Logic as a Computational Mecha-nism. Technical Report 79-59, Dept. of Computing, Impe-rial College, 1979.[Deville & Lau 94] Y. Deville and K.K. Lau. Logic program synthesis. TheJournal of Logic Programming, 19/20:321{350, May/July1994.[Deville 90] Y. Deville. Logic Programming. Systematic Program De-velopment. International Series in Logic Programming.Addision-Wesley, 1990.[Fribourg 90] L. Fribourg. Extracting logic programs from proofs that useextended Prolog execution and induction. In Proceedingsof Eighth International Conference on Logic Programming,pages 685 { 699. MIT Press, June 1990.[Gallier 86] J. Gallier. Logic for Computer Science. Harper & Row,New York, 1986.[Gordon et al 79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. EdinburghLCF - A mechanised logic of computation, volume 78 ofLecture Notes in Computer Science. Springer Verlag, 1979.[Hesketh 91] J.T. Hesketh. Using Middle-Out Reasoning to Guide Induc-tive Theorem Proving. Unpublished PhD thesis, Universityof Edinburgh, 1991.[Huet 75] G. Huet. A uni�cation algorithm for lambda calculus. The-oretical Computer Science, 1:27{57, 1975.27

[Hutter 94] D. Hutter. Synthesis of induction orderings for existenceproofs. In Proceedings of the 12th Conference on AutomatedDeduction, 1994.[Ireland & Bundy] A. Ireland and A. Bundy. Productive use of failure in in-ductive proof. JAR (this issue).[Ireland 92] A. Ireland. The Use of Planning Critics in Mechanizing In-ductive Proofs. In A. Voronkov, editor, International Con-ference on Logic Programming and Automated Reasoning {LPAR 92, St. Petersburg, Lecture Notes in Arti�cial Intel-ligence No. 624, pages 178{189. Springer-Verlag, 1992. Alsoavailable from Edinburgh as DAI Research Paper 592.[Kraan 94] I. Kraan. Proof Planning for Logic Program Synthesis. Un-published PhD thesis, Department of Arti�cial Intelligence,University of Edinburgh, 1994. Submitted February 1994.[Kraan et al 93a] I. Kraan, D. Basin, and A. Bundy. Logic program synthe-sis via proof planning. In K.K. Lau and T. Clement, ed-itors, Logic Program Synthesis and Transformation, pages1{14. Springer-Verlag, 1993. Also available as Max-Planck-Institut f�ur InformatikReport MPI-I-92-244 and EdinburghDAI Research Report 603.[Kraan et al 93b] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning forlogic program synthesis. In D. S. Warren, editor, Proceed-ings of the Tenth International Conference on Logic Pro-gramming. MIT Press, 1993. Also available as Max-Planck-Institut f�ur InformatikReport MPI-I-93-214 and EdinburghDAI Research Report 638.[Lau & Prestwich 88] K. K. Lau and S. D. Prestwich. Synthesis of recursive logicprocedures by top-down folding. Technical Report UMCS-88-2-1, Dept. of Computer Science, University of Manch-ester, February 1988.[Lau & Prestwich 90] K. K. Lau and S. D. Prestwich. Top-down synthesis of re-cursive logic procedures from �rst-order logic speci�cations.In D.H.D.Warren and P. Szeredi, editors, Proceedings of the7th International Conference on Logic Programming, pages667{684. MIT Press, 1990.[Lloyd 87] J.W. Lloyd. Foundations of Logic Programming. SymbolicComputation. Springer-Verlag, 1987. Second, extended edi-tion.[Manning 92] A. Manning. Representing preference in proof plans. Un-published M.Sc. thesis, Dept. of Arti�cial Intelligence, Ed-inburgh, 1992.[Martin-L�of 79] Per Martin-L�of. Constructive mathematics and computerprogramming. In 6th International Congress for Logic,Methodology and Philosophy of Science, pages 153{175,Hanover, August 1979. Published by North Holland, Ams-terdam. 1982. 28

[Miller 91] D. Miller. A logic programming language with lambdaabstraction, function variables and simple uni�cation. InExtensions of Logic Programming, volume 475 of LectureNotes in Arti�cial Intelligence. Springer-Verlag, 1991.[Nipkow 91] T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEESymp. Logic in Computer Science, pages 342{349, 1991.[Protzen 94] M. Protzen. Lazy generation of induction hypotheses. InProceedings of the 12th Conference on Automated Deduc-tion, 1994.[Richards et al 94] B.L. Richards, I. Kraan, A. Smaill, and G.A.Wiggins. Mol-lusc: a general proof development shell for sequent-basedlogics. In A. Bundy, editor, 12th Conference on AutomatedDeduction, pages 826{30. Springer-Verlag, 1994. LectureNotes in Arti�cial Intelligence, vol 814; Also available fromEdinburgh as DAI Research paper 723.[Stevens 88] A. Stevens. A rational reconstruction of Boyer and Moore'stechnique for constructing induction formulas. In Y. Ko-drato�, editor, The Proceedings of ECAI-88, pages 565{570.European Conference on Arti�cial Intelligence, 1988. Alsoavailable from Edinburgh as DAI Research Paper No. 360.[Wiggins 92] G. A. Wiggins. Synthesis and transformation of logic pro-grams in the Whelk proof development system. In K. R.Apt, editor, Proceedings of JICSLP-92, pages 351{368.M.I.T. Press, Cambridge, MA, 1992.

29

