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Middle-Out Reasoning for Synthesis and Induction

Ina Kraan* David Basin' Alan Bundy*

July 10, 1995

Abstract

We develop two applications of middle-out reasoning in inductive proofs:
Logic program synthesis and the selection of induction schemes. Middle-
out reasoning as part of proof planning was first suggested by Bundy et al
[Bundy et al 90a]. Middle-out reasoning uses variables to represent unknown
terms and formulae. Unification instantiates the variables in the subsequent
planning, while proof planning provides the necessary search control.

Middle-out reasoning is used for synthesis by planning the verification of
an unknown logic program: The program body is represented with a meta-
variable. The planning results both in an instantiation of the program body
and a plan for the verification of that program. If the plan executes success-
fully, the synthesized program is partially correct and complete.

Middle-out reasoning is also used to select induction schemes. Finding
an appropriate induction scheme during synthesis is difficult, because the
recursion of the program, which is unknown at the outset, determines the
induction in the proof. In middle-out induction, we set up a schematic step
case by representing the constructors that are applied to induction variables
with meta-variables. Once the step case is complete, the instantiated variables
correspond to an induction appropriate to the recursion of the program.

We have implemented these techniques as an extension of the proof plan-
ning system CTAM [Bundy et al 90c], called Periwinkle, and synthesized a
variety of programs fully automatically.

keywords: Automated theorem proving, proof planning, induction, logic program
synthesis, meta-variables, higher-order unification

1 Introduction

We develop techniques based on proof planning and middle-out reasoning that en-
able the automatic synthesis of logic programs. Proof planning entails explicit
reasoning about how to construct proofs. Middle-out reasoning allows proof plan-
ning to progress even though an object being reasoned about is not yet fully known.
Middle-out reasoning represents unspecified objects in the proof with variables and
instantiates them using unification. Thus we can plan proofs while leaving certain
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unknown terms or formulae to be filled in at a later stage. In program synthesis
based on inductive proofs, there are two things that are unknown: First, most ob-
viously, the program to be synthesized, but second the type of induction used in
the proof. This is because the appropriate type of induction depends on the type
of recursion of the program to be synthesized.

Middle-out reasoning for program synthesis and induction has been implemented as
an extension of the proof planning system CITAM [Bundy et al 90c]. The extended
system, called Periwinkle, has been used to synthesize a variety of programs. Peri-
winkle is available on request from the first author.

This paper elaborates and extends [Kraan et al 93a, Kraan et al 93b]; more detail
can be found in [Kraan 94]. The paper is organized as follows: Section 2 is an
introduction to proof planning. Sections 3 and 4 present middle-out reasoning for
logic program synthesis and the selection of induction schemes. Section 5 presents
new methods that proved necessary for synthesis. Section 6 reports on the imple-
mentation and on practical results. Section 7 presents ideas for further research,
and section 8 draws conclusions.

2 Proof Planning

To use the built-in heuristics common in theorem provers more flexibly, Bundy
[Bundy 88] suggests using a meta-logic to reason about and to plan proofs. Proof
plans are constructed in the meta-logic by successively applying methods to a conjec-
ture until a combination of methods has been found that forms a complete plan. A
method is a partial specification of a tactic [Gordon et al 79] in the following sense:
If a sequent matches the input pattern, and the pre-conditions are met, the tactic is
applicable; if the tactic succeeds, the output conditions will be true of the resulting
sequents. Explicit proof planning has been implemented in CTAM [Bundy et al 90c¢],
which constructs plans for inductive proofs in a variant of Martin-Lof type theory
[Martin-Lof 79]. The plans are executable in Oyster [Bundy et al 90c], a sequent-
style interactive proof checker.

The advantages of the meta-logic approach are that the search for proofs takes
place at the meta-level rather than the object level. The search is less expensive,
since methods capture the effects of the corresponding tactics, while avoiding the
possibly considerable cost of executing them. More importantly, however, the meta-
level representation of the proof can be augmented with additional information on
the proof to restrict the search space. The information is passed from method to
method, which gives a global rather than a local view of the proof.

Proof planning has concentrated on inductive proofs. The central method for in-
ductive proofs is ind_strat, a composite method capturing the structure of such
proofs. It is composed of the methods induction, base_case, and step_case. The
induction method selects a set of induction variables and an induction scheme for
a given conjecture, a step crucial to the success of proof planning. The induction
method uses recursion analysis to select an induction. Recursion analysis is a ra-
tional reconstruction and extension of the heuristics used in NQTHM to select
induction variables and schemes [Boyer & Moore 88, Stevens 88, Bundy et al 89].
Recursion analysis prefers induction variables that occur in the recursive positions
of the function or relation dominating them (i.e., are smaller in the recursive calls)
and which can be rewritten using an axiom or a lemma. It selects a scheme which
corresponds to the recursion of the dominating function or relation. In essence,
recursion analysis is a look-ahead into the rewriting of the step case.

The induction method applies recursion analysis to the input sequent. It succeeds



if the analysis suggests a suitable induction scheme and fails otherwise. For the
associativity of +, for example,

Ve,y,z. (e 4+y)+z=o+ (y+ 2) (1)
recursion analysis using

Vao,y.s(x)+y = s(r+y) (2)
Ve,yoe =y —  s(z) =s(y) (3)

suggests structural induction on z. Outputs are the base and step cases for the
selected induction. Step cases are annotated for the ripple method (see below).

The base_case method iterates over a symbolic evaluation method sym_eval and
a simplification and tautology-checking method elementary.

In the step case, the main objective is to rewrite the induction conclusion so that
the induction hypothesis can be exploited. The step_case method applies the
ripple method to rewrite the induction conclusion and the fertilize method
to exploit the induction hypothesis. The ripple method embodies the rippling
heuristic [Bundy et al 93]. This heuristic uses rewrite rules to eliminate the differ-
ences between the induction hypothesis and the induction conclusion so that the
induction hypothesis can be exploited. The function symbols that appear in the
conclusion, but not in the hypothesis, are called wave fronts. Initially, the wave
fronts immediately dominate the induction variables. The role of rippling is to
move them outwards—just like ripples on a lake—until a perfect reflection of the
induction hypothesis is left. The rippling heuristic has been shown to terminate
[Bundy et al 93, Basin & Walsh ]. We represent wave fronts as boxes with holes.
The holes are indicated by underlinings. For the step case of the proof of (1), the
induction method sets up the annotated sequent

(e+y)+e=at++2) b (@]t +z=]s@)]+m+2).

If we remove the structure in the non-underlined parts of the boxes from the con-
clusion, we obtain the skeleton, i.e., a copy of the induction hypothesis.

Rippling consists of applying annotated rewrite rules called wave rules. The anno-
tations on wave rules ensure that applying a wave rule will move at least one wave
front up in the term tree of the induction conclusion if the annotations in the rule
are compatible with those of the conclusion. The (simplified) schematic format of
a wave rule that moves one wave front is

FISWU]| = TFU]]

The effect of applying a wave rule is to move the wave front S on the left-hand
side outwards past the F' and to turn it into a wave front 7T on the right-hand side,
whose position is higher up the term tree. Note that := indicates rewriting, not
implication. In inductive theorem proving, rippling reasons backwards from the
induction conclusion to the induction hypothesis. Thus, rewrite rules may be based
on equality, equivalence, or implication from right to left. Wave rules based on (2)

and (3), for example, are
4N = [s(M+N)
) - v

where M and N are free variables.



Rippling as presented so far is known as rippling out. It is an extension of the
ripple-out heuristic developed by Aubin [Aubin 76]. For a complete description of
all variations of rippling see [Bundy et al 93].

The fertilization methods exploit the induction hypothesis. If, after rippling, the
wave front surrounds the entire induction conclusion (or has disappeared), the
strong fertilization method appeals to the induction hypothesis directly. If
the wave fronts do not yet surround the entire induction conclusion, the weak
fertilization method uses the induction hypothesis as a rewrite rule.

Rippling may terminate before the induction hypothesis can be exploited. We then
say that the rippling is blocked. There are various techniques to unblock the rippling,
which modify the conclusion in some way that makes a wave rule or fertilization
applicable. A common unblocking step is simplifying a wave front.

3 Middle-Out Synthesis

3.1 Pure Logic Programs

The logic programs we synthesize are the completions of a subset of normal programs
(see Lloyd [Lloyd 87]), which we call pure logic programs. They are similar to
pure logic programs as defined by Bundy et al in [Bundy et al 90b] and the logic
descriptions of Deville [Deville 90]. Formally, we define them as finite sets of pure
logic program clauses. A pure logic program clause is a closed, typed formula of the
form

vz:T. A(T) & H

where T is a vector of distinct variables with types given by T (generally left implicit
in the following), A(Z) is an atom, called the head of a clause, and H is a Horn
body. A formula H is a Horn body if, in Backus-Naur notation,

H::IA|H1/\H2|H1\/H2|E|$.H,

where A is an atom whose name is a known relation (such as = or #) or whose
name is among the names of the heads of previously defined clauses (including the
one being defined). An example of a pure logic program is

Va,l. member(z,l) < Fh,t.l=hutA(z =hVmember(z,t)) (4)
Vi, j. subset(é,j) & i=mniV
3h,t. i = kot Amember(h, j) A subset(t,j) . (5)

We synthesize pure logic programs because they are a suitable intermediate repre-
sentation between non-executable specifications and executable programs. In par-
ticular, the definition of pure logic programs guarantees that

vz:T. A(T) « H

corresponds to a set of definite program clauses (see Lloyd [Lloyd 87]).

The class of pure logic programs is very general: It captures the semantics of pure
logic programming languages. It also captures the basic recursive structure of algo-
rithms, while avoiding non-logical aspects such as order of execution and non-logical
primitives, which are normally specific to the implementation of a logic program-
ming language. This enables us to break down the formidable task of synthesis:
First, we synthesize the basic structure of the algorithm, independent of any par-
ticular programming language. In a second step, we can translate the pure logic



F Prog[Base] + Spec[Base]

: symbolic evaluation
F Formula; < Formulas

: simplification
Ftrue

tautology

Figure 1: Schematic base case in verification

program into a logic programming language of our choice and introduce non-logical
primitives as desired. Synthesizing pure logic programs has another advantage:
The intended meaning of the program coincides with its logical meaning. Thus, we
can reason within the well-understood framework of (many-sorted) first-order logic
(with induction) and bring knowledge in theorem-proving to bear.

Using pure logic programs, we can prove partial correctness and completeness' by
showing that A(7Z) as defined by A(T) & H is equivalent to S

ve:T.A(@) <« H F vV&:T.A(F) < S,

where A(T) and H are as above and S is the specified relation. The proof of
equivalence is conducted in an appropriate first-order theory containing axioms and
induction principles for recursively defined data-types. For instance, to verify the
subset program with respect to the specification

V. member(z, i) — member(z, j) ,
we prove, in a standard theory of lists,
Vi, j. subset(i, j) & (Vo. member(x, i) = member(x, j)) (6)

from the definitions (4) and (5). Such proofs underlie our synthesis approach.

3.2 Planning Logic Program Verification Proofs

To illustrate verification proof planning, we verify subset, i.e., we prove that the
logic program (5) verifies conjecture (6). Recursion analysis suggests structural
induction on 7. The base case is

F subset(nil, j) < (Ve. member(z, nil) — member(z, j)) .
Symbolic evaluation using the base cases of subset and member yields
Ftrue & (Ya. false — member(x, j)) ,

which simplifies to true. The sequence of symbolic evaluation, simplification, and
tautology checking is typical of the base cases of verification proofs (see figure 1).

I In logic programming, partial correctness means that the computed relation is a subset of the
specified relation, completeness that the specified relation is a subset of the computed relation

[Clark & Tarnlund 77, Clark 79].



The annotated step case for induction on 7 is:

subset(t, j)

subset(, J) e

To ripple, we need the wave

rules

subset(, L)
member(X, )

& (V. member(x,t) — member(x, j)) F

(7)

(Vl‘. member(x,) — member(l‘,j))

T,L) (8)

9)

= |member(H, L) A subset(T,

= | X = HV member(X,T)
—>R = ‘P%RAM‘
Vm.‘P/\Q‘ = |(Ve. P)AV2. Q

= @R

PAQ|=|PAR

of which the first two are based on (4) and (5) and the remaining three on theorems
of first-order logic. The latter are called logical wave rules (see section 5.1).

(10)

(11)
(12)

The rippling of the induction conclusion in subset example consists of applying (8)-

(11)

subset ’—\ 7)

member(h, j) A subset(t, j)

member(h, j) A subset(t, j)

member(h, j) A subset(t, j)

—
—
—
—

J)
)
)

V. member(zx,

V. member(zx,

V.

|~ |~

h
h::

z = hV member(z,t)

) — member(x

) — member(x

17
17

— member(z, j)

V.

z = h = member(z, j) A member(x,t) — member(z, j)

member(h, j) A subset(t, j

)| &

(Ve. 2 = h = member(z, j)) AVa. member(z,t) — member(z, j)

and simplifying the wave front on the right-hand side

)

member(h, j) A subset(t, j

&

member(h,

J) AV, member(z,t) — member(z, j)

so that (12) can be applied

subset(t, j) < V. member(x,t) — member(z, j) .

Strong fertilization completes the proof plan. The sequence of rippling both sides
of the equivalence, applying a wave rule that removes the wave fronts, and strong
fertilizing is typical of the step cases of verification proofs (see figure 2).

3.3 From Verification to Synthesis

Middle-out reasoning can be used to turn verification proof planning into synthesis
by planning the verification of a program while leaving the program unknown. We
start with a program whose body is represented with a meta-variable. In the course
of planning, the variable becomes instantiated to a program. The planning thus



Prog[Arg] <+ Spec[Arg] & Prog| Constr[Arg] || <+ Spec| Constr[Arg] [

ripple under equivalence
Prog[Arg] & Spec[Arg] b | Front[Prog[Arg]] | & | Front[Spec[Arg]]

final ripple
Prog[Arg] < Spec[Arg] b Prog[Arg] < Spec[Arg]

strong fertilization

Figure 2: Schematic step case in verification

results both in an instantiation of the program body and a plan for the verification of
that program. If the plan executes successfully, the synthesized program is partially
correct and complete.

Representing the program body with a meta-variable entails a loss of information,
which affects the proof planning. In the verification proof above, there were a
number of steps that depended on the program, but also some that did not. In
particular, the symbolic evaluation of subset in the base case and the ripple with
the subset wave rule (8) depend on the program. The main difference between
verification and synthesis planning is that in verification, the two types of steps
tend to be interleaved. In synthesis, the part of the proof that does not depend
on the program is planned first, and any step that does is postponed as long as
possible. This is because, in synthesis, any step that depends on the program
partially instantiates, i.e., commits the program. Postponing such steps is a least
commitment strategy.

To illustrate this, we redo the step case of the verification proof in section 3.2,
omitting any steps that depend on the program. This rules out rippling with the
subset wave rule (8). The rippling progresses as follows, using wave rules (9)—(11)
and unblocking.

subset(,j) & Vo |z = hV member(z,t) | — member(z, j)

subset(| h:ut) j) & Va.|z = h— member(z,j) A member(z,t) — member(z, j)

(Ve. 2 = h = member(z, j)) AVa. member(x,t) = member(z, j)

subset(’h—t‘, Jj) e
(2]

subset(| h:t) j) | member(h,j) AVa. member(z,t) — member(z, j)

The lack of wave rule for subset now prevents us from further rippling. However,
we can apply weak fertilization: We use the induction hypothesis (7) as a rewrite
rule. This yields

subset(,j) member(h, j) A subset(t,j) |.

Now we have applied all possible steps that do not depend on the program. In
fact, the residual conjecture is precisely the part of the proof that in a verification,
would have been proved using the subset wave rule (8). Tt is thus the step clause
of our program. By appealing to the as yet uninstantiated program, we commit it
to correspond to this residual conclusion. The details of this process are presented
below. Figure 3 shows schematically how a typical step case of a synthesis proof



Prog[Arg] & Spec[Arg] F Prog|| Constr[Arg] || & Spec| Constr[Arg] |

: ripple under equivalence
Prog[Arg] & Spec[Arg] F Prog|| Constr[Arg]| < | Front[Spec[Arg]]

: weak fertilization
Prog[Arg] & Spec[Arg] F Prog|| Constr[Arg]| ¢ | Front[Prog[Arg]]

appeal to program

Figure 3: Schematic step case in synthesis

F Prog[Base] < Spec[Base]

: symbolic evaluation, simplification
F Prog[Base] < Formula
appeal to program

Figure 4: Schematic base case in synthesis

progresses: The specification side of the induction conclusion is rippled until weak
fertilization is possible, and the proof is completed by appealing to the program.

The base case is similar. In synthesis, only the specification side is symbolically
evaluated and simplified, and the residual conclusion corresponds to part of the
program (see figure 4).

3.4 An Example Synthesis
We synthesize the program we verified in section 3.2. The subset program is now

Vi, j. subset(i, j) & P(i,j) ,

where P is the meta-variable that represents the program body. We again do struc-
tural induction on 7. The type of induction immediately determines the recursive
structure of the program. Each induction scheme is associated with the correspond-
ing recursive structure, and the program body is unified (see section 4.2) with this
structure

Vi, j. subset(i,j) < i=nil AB(j)V (13)
dh,t.i=hat AS(h,t,j) .
The base case for induction on ¢ is
F subset(nil, j) < (Ve. member(z, nil) — member(z, j)) .
Symbolic evaluation using the base case of member and simplification yield

F subset(nil, j) < true . (14)



We are now left with what will become the base case of the program. By appealing
to the as yet uninstantiated program definition, we complete the base case of the
proof and at the same time instantiate the base case of the program. This is done
by the synthesis method. To appeal to the program (13), the synthesis method
instantiates it appropriately and simplifies it

subset(nil,j) < nil = nil AB(j) V
At nil = Bt AS(R LT )
subset(nil,j) & B(j) . (15)
The conclusion (14) and the program (15) are unified (see section 4.2), which yields

the instantiation Au. true for B and completes the base case. The (normalized)
partially instantiated program so far is thus

Vi, j. subset(,j) < {=nil AtrueV (16)
dh,t.i=hat AS(h,t,j) .

In section 3.3, we showed that the residual conclusion in the step case is

subset(| h::t] |, j) ¢ | member(h, j) A subset(t, j) | . (17)

We must establish that this follows from the program definition. The synthesis
method instantiates (16) appropriately and simplifies it

subset(h::t,j) < hut=ni AMrueV
AN hat =Rt AS(R T )
subset(h::t,j) < S(h,t,j). (18)

Unifying (see section 4.2) the conclusion (17) (with annotations removed) and the
program (18) instantiates & with Aw, v, w. member(u, w) A subset(v, w) and com-
pletes the step case. We get the (normalized) fully instantiated program

Vi, j. subset(i,j) < @ =nil AtrueV
3h,t. i = kit Amember(h, j) A subset(t, j) .

3.5 Auxiliary Syntheses

In the course of a synthesis, we need to prevent a meta-variable from becoming in-
stantiated with a program body that violates the definition of pure logic programs
(see section 3.1). Instead of directly checking the instantiation, Periwinkle parses
the program on completion of a synthesis, marking any subformulae that violate the
syntactic restrictions on pure logic programs. The universal closure of each such
subformula is taken as the specification for an auxiliary synthesis. In the initial
program, any subformula for which an auxiliary synthesis was run is substituted
with a call to the corresponding auxiliary predicate, and all auxiliary predicates are
added to the program. Note that an auxiliary synthesis may require further auxil-
iary syntheses. Though the process is not guaranteed to terminate, non-termination
has not been a problem in practice. An example where an auxiliary synthesis is
necessary is the specification

Vm, . max(m,l) <  member(m,l) A (Ve. member(z,l) — x < m),



which states that m is the maximum element of [. The synthesized program is

Vm,l. max(m,l) < |=ni A false V
Jh,t.l=hot A(m=hA (Ve member(z,t) > < m)V
h < mAmax(m,t)) .

The subformula V. member(z,t) — « < m violates the definition of pure logic
programs, since it contains a universal quantifier and an implication. The auxiliary
specification is

Vm, . aux(m,l) & (Ve. member(z,l) > < m) ,
which states that m is greater than any element of {. The final program is

Vm,l. max(m,l) < | =nil A false v
Jh,t.l=hut A(m=hAauz(m,t)V
h < m Amaz(m,t))
Vm, o aux(m,l) < [ =nil AtrueV
dh,t.l=hut A< mAauz(m,t) .

3.6 Related Work in Program Synthesis

Most program synthesis approaches have originated in the field of functional pro-
gramming. There has, however, been increased interest in adapting these to
logic program synthesis. For a detailed overview of logic program synthesis, see

[Deville & Lau 94].

Fribourg [Fribourg 90] and Wiggins [Wiggins 92] both adapt the proofs-as-programs
approach to logic program synthesis. Fribourg, however, uses V3 specifications.
The synthesized programs are thus not truly relational. Wiggins develops a syn-
thesis logic for relational program synthesis with a decidability operator, imple-
mented in a system called Whelk. Both systems are interactive. LOPS [Bibel 80,
Bibel & Hornig 84] transforms first-order specifications into logic clauses. LOPS
also uses V3 specifications and thus is not really relational. The semi-automatic
system of Lau and Prestwich [Lau & Prestwich 88, Lau & Prestwich 90] is based
on unfold/fold transformations of logic programs. Our approach synthesizes truly
relational programs, like Wiggins and Lau and Prestwich, and unlike Fribourg and
LOPS. 1t is also fully automatic. A more detailed comparison of our approach with
those of Wiggins and Lau and Prestwich follows.

The emphasis in Whelk [Wiggins 92] is to develop a logic in which relational pro-
grams can be synthesized via proofs-as-programs-style extraction. Thus, in the
Whelk system, synthesis takes place at the object level, not the meta-level, and
correctness and executability are ensured in the object-level logic. By contrast,
we synthesize and ensure executability at the meta-level, while establishing partial
correctness and completeness by a verification proof at the object level. The differ-
ence between the two approaches lies in emphasis. While the Whelk project focuses
more on the logical issues of logic program synthesis, we have put more emphasis on
automation. We have therefore chosen as our object-level logic a well-understood
formal system, i.e., many-sorted first-order logic with induction, and have taken
a perhaps pragmatic approach by using middle-out reasoning for synthesis and by
ensuring executability using extralogical means. In the Whelk project, on the other
hand, a special logic with a decidability operator was developed to synthesize guar-
anteed executable programs, while automation was a secondary priority.

10



The proof planning system C'TAM is currently being adapted to plan proofs in the
Whelk logic. The techniques developed here will be directly applicable, in particular
middle-out induction (see section 4) and extensions to rippling (see section 5). On
the other hand, results in the Whelk logic could be used to ensure executability at
the meta-level without extra-logical means, thus improving our handling of auxiliary
syntheses.

The system of Lau and Prestwich [Lau & Prestwich 88, Lau & Prestwich 90] is
semi-automatic and unfold/fold-based. Tt synthesizes partially correct, but not
necessarily complete programs. It solves a synthesis problem by bringing it into a
normal form and decomposing it top-down into subproblems until the subproblems
are easily solved. The program is then composed bottom-up from the solutions of
the subproblems. User interaction is required to limit the search space by specifying
the desired recursive calls of the program and by deciding which subproblems to
solve. The main strategies are definition, implication and matching. The definition
strategy selects a definition and uses the if part of the definition to unfold and the
only if part to fold. The implication strategy exploits known recursive implications.
The match strategy solves trivial folding problems.

The subset example is taken from [Lau & Prestwich 88]. Tt is thus a good candidate
for comparison. The input to the system of Lau and Prestwich are the subset
specification, the definition of member, and a goal specifying the initial unfold/fold
problem. The definition strategy is applied twice, which results in two subproblems.
The first is solved with the implication, the second with the match strategy. There
are no remaining subproblems, and the solution can be composed. This involves the
actual unfolding and folding, interleaved with steps to bring intermediate formulae
into various types of normal forms. Setting the initial fold problem corresponds to
selecting the type of induction. The initial unfolding then corresponds to induction,
and the last folding to fertilization. The remaining decomposition, normalizing and
composition steps correspond to rippling. In fact, we believe that approach of Lau
and Prestwich could be improved by exploiting rippling to guide the folding. This
would obviate the need for normal forms.

Lau and Prestwich synthesize partially correct, but not necessarily complete pro-
grams, whereas we insist on both partial correctness and completeness. Not requir-
ing completeness has the advantage that the body of the program being synthesized
can be strengthened. Although strengthening allows greater flexibility in synthesis,
it also increases the search space, which in Lau and Prestwich’s work, translates into
a need for user interaction. Nevertheless, our approach could well benefit from the
strategies of Lau and Prestwich that strengthen formulae to allow folding. This may
well be essential when synthesizing larger, more complex programs, or synthesizing
programs from partial specifications.

4 Middle-Out Induction

Determining the appropriate type of induction for a given conjecture is a difficult
task. The most widely used technique is recursion analysis (see section 2). However,
recursion analysis works poorly in the presence of existential quantifiers, which arise
in V3 specifications of functions. This is because the appropriate induction scheme
is bound to the recursion scheme of the witnessing function—which is precisely what
we want to synthesize and therefore do not know. Using an inappropriate induction
scheme may make it difficult to find a proof and may lead to an unintuitive or
inefficient program.
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An example where recursion analysis breaks down is quotient remainder
Ve,y.dg,r. 2420 > gxaz+r=y Ar<z.

Only z and y are available as induction variables, and given the standard definitions
of x, 4, and <, recursion analysis cannot find the appropriate induction, which is
induction on y, where the induction term is y + .

Recursion analysis works better for the relational conjectures in our approach. The
conjecture for a quotient remainder relation ¢r is

Ve,y,q,r.qr(z,y,q,7) & gxXxe+r=y Ar<uz,

where ¢r is undefined. Since the conjecture is universally closed, we can choose
any of =, y, ¢, and r as induction variables, not only # and y. Hence, recursion
analysis stands a better chance of success. For this conjecture, recursion analysis
does suggests an appropriate induction: one-step structural induction on g¢.

However, recursion analysis is always limited to finding a type of induction based
on the recursion schemes present in the specification or in given lemmas. Even for
relational conjectures, the recursion of the program may not be among them. An
example of this is the conjecture

Ve.even(z) & (Jy. y x s(s(0)) = x)

where even is undefined. The natural recursion of the program is two-step recursion,
which is not suggested by the standard definition of x. Therefore, we need a more
powerful technique.

Middle-out reasoning can provide such a technique. It can be used to postpone the
first, crucial step in the planning of inductive proofs, namely the selection of an
induction. This was first suggested by Bundy et al [Bundy et al 90a], but had not
been elaborated or implemented. Using meta-variables, we can set up a schematic
step case representing many possible inductions. This is achieved by using meta-
variables to represent constructors applied to potential induction variables in the
induction conclusion. We can then ripple this schematic step case. The application
of wave rules successively instantiates the meta-variables. Once fertilization has
taken place, the meta-variables are fully instantiated and correspond to a type of
induction. We do need to ensure that the induction is a valid one, i.e., that the
induction ordering is well-founded. The most general approach would be to prove
that the order is in fact well-founded. This is a difficult task, undecidable in general.
We currently use a simpler approach, which is to check whether the ordering is
among a set of orderings known to be well-founded. Once we have determined that
the induction is valid, we can set up the corresponding base cases and complete the
proof using standard proof planning methods.

Middle-out induction has two main advantages over recursion analysis: First, it is
a more general approach. It can find an appropriate induction even in cases where
recursion analysis fails. Second, recursion analysis essentially performs a look-ahead
into the rippling process, whereas middle-out induction requires no such look-ahead.
However, there are two problems to overcome in middle-out induction: It requires
some kind of higher-order unification, and rippling is no longer terminating. These
problems are discussed below.

12



4.1 An Example Synthesis with Middle-Out Induction

We present a variation of the even specification above?. The conjecture is
Ve even(z) +  (Jy. double(y) = z)

where double is defined as

double(0) = 0
V. double(s(z)) = s(s(double(x))) .

The wave rules for double and the replacement axiom for s are

double(|s(U) ) = |s(s(double(U))) (19)

: = U=V. (20)

The schematic step case is

even(z) & (Jy. double(y) = z) - (21)

where C is the meta-variable standing for the constructor applied to the potential
induction variable, and the dashed boxes indicate potential wave fronts, i.e., C may
be instantiated to some function which becomes the wave front or to the identity
function Az. x. The latter means that there is no wave front. Initially, no wave rule
applies. To make a wave rule applicable, we need to introduce a case split on the
existential variable y. This is done by the unrolling method, which is presented
in detail in section 5.2. Unrolling on y yields

even( C(z) ) < |double(0) = C(x) vV Iy double(|s(y') ) =1 C(x) 1.

even(i C(z) 1) « |double(0) = C(x) vV Iy .| s(s(double(y'))) |=:1C(z) 1] .

even(| s(s(C"(z)1) |) + | double(0) = s(s(C”(x))) V Iy . double(y') =:C"(z) ] .

We can simplify and weak fertilize, i.e., apply the induction hypothesis (21) as a
rewrite rule. This yields

even(s(s(x))) ¢ even(x) .

Weak fertilization instantiates C to Au. s(s(u)). The step case and the base cases
are now completed as described in section 3.

2We use the variation here because Periwinkle fails on the original, but succeeds for the varia-
tion. Though it does find the appropriate induction in the original, i.e., two-step induction on z,
it fails on the auxiliary synthesis in the second base case

Vz. auzeven(z) <+ (Jy. y x s(s(0)) = s(0)) ,

since it is not yet able to simplify Jy. y X s(s(0)) = s(0) to false.
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4.2 TUnification

Since we use higher-order meta-variables in our middle-out reasoning, we are con-
fronted with the problem of higher-order unification, which is only semi-decidable.
Moreover, there is no unique most general unifier of higher-order terms. When
using higher-order terms, therefore, one either accepts this and uses, for instance,
the procedure of Huet [Huet 75], combined with backtracking over or selection of
possible unifiers, or one uses a restricted subset of higher-order terms with tractable
unification, e.g., higher-order patterns. The former approach has been taken, for
instance, by Hesketh [Hesketh 91] and Ireland [Ireland 92]. The latter approach is
taken here.

Higher-order patterns [Miller 91, Nipkow 91] are expressions whose free variables
have no arguments other than bound variables. Formally, following [Nipkow 91],

“a term ¢ in B-normal form is called a (higher-order) pattern if every
free occurrence of a variable F' is in a subterm F(uq,...,uy) of t such
that each wu; is -equivalent to a bound variable and the bound variables
are distinct.”

Higher-order patterns are akin to first-order terms in that unification is decidable
and there exists a unique most general unifier of unifiable terms.

We have restricted ourselves to higher-order patterns for the terms in which we use
meta-variables because they fall naturally into the class of higher-order patterns.
For synthesis proper, we are creating programs that represent relations and that
are therefore developed in the context of a collection of universally bound variables.
The distinctness requirement is already satisfied by the definition of pure logic pro-
grams. Thus, what we start out with as our program is already a higher-order
pattern. Any step that further instantiates the higher-order pattern does so via
unification with another higher-order pattern. For middle-out induction, we use
meta-variables to represent the constructor function applied to the induction vari-
able. Since the variable on which we induce must be universally bound to begin
with, the expressions we obtain are again higher-order patterns. Furthermore, the
instantiation of the meta-variables occurs via the application of wave rules, which
are also higher-order patterns.

4.3 A More General Representation of the Step Case

The representation of the schematic step case used above does not cover more
complex induction schemes where the induction term for a variable refers also to
other variables. This is the case, for instance, in the quotient remainder example

Ve,y,q,r.qr(z,y,q,7) & gXxaezt+r=yAr<uz,

where the induction term for y is y + . Above, we represented the induction
term for a variable with a meta-variable applied to the variable, e.g., D(y) for
y. Since the potential induction variables are bound, the instantiation of D(y)
cannot refer to the variables z, ¢, or r. To allow this, we must generalize the
representation of the schematic step case by representing the induction term for
a potential induction variable as an application of a meta-variable to all potential
induction variables. Thus, the induction term for y is represented as D(z,y,q,7),
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While dealing with this representation is not a problem for Periwinkle, it is not
particularly fit for human consumption. The implementation supports both the
simpler representation in section 4.1 and the more complex representation here.

4.4 Controlling Rippling

Two of the main advantages of rippling are that it gives a tight control on rewriting
and that it terminates. The termination proof [Bundy et al 93, Basin & Walsh ]
makes some restrictions, i.e., existential rippling (see section 5.2) and meta-variables
are excluded, precisely because they can lead to non-termination. Since middle-out
synthesis and induction require meta-variables, we must contend with the possibility
of non-termination and devise strategies to avoid it.

Non-termination is in fact more likely than not in rippling in middle-out induction.
In terms of the rippling search tree in the schematic step case, where each node
corresponds to the application of a wave rule, we can differentiate between two basic
types of non-termination: Non-termination in success branches and non-termination
in failure branches.

Non-termination in success branches can be avoided by distinguishing between
speculative and non-speculative steps. Applying a wave rule to potential wave
fronts only, for instance, is a speculative step. Fertilization and applying a wave
rule to at least one definite wave front are non-speculative steps. By preferring
non-speculative to speculative steps, non-termination on success branches can be
avoided. However, this does not avoid non-termination in failure branches. If there
were always at least one success branch in the rippling search tree, breadth-first
search would solve the problem. Unfortunately, however, this is not the case. A
simple example of a rippling search tree with failure branches only is a variant of
the associativity of plus>

Ve.x+ (e+2)=(x+2)+2.

To avoid non-termination in failure branches, we allow only one speculative step,
which can be a speculative ripple or an unrolling step (see section 5.2), and then
ripple while trying to fertilize as soon as possible. This does mean that Periwinkle
cannot find a proof for theorems which depend on more than one speculative ripple.
This is in fact rare, so that it does not appear to be a severe limitation.

4.5 Related Work in Selection of Induction Schemes

There has been little work on techniques to select induction schemes be-
yond recursion analysis, except within the framework of the Inka theorem-
prover [Biundo et al 86], a theorem prover based on resolution and rippling with
destructor-style induction.

3Here, we would need to generalize before doing induction. In the ordering of methods, however,
induction comes before generalization, and the depth-first planner will select induction. This
particular example can be solved by a best-first planner with an evaluation function to determine
whether induction or generalization should be preferred (see Manning [Manning 92]).
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The synthesis system of Biundo [Biundo 88] applies a heuristic called most-nested
function to specifications in the form of skolemized V3 formulae. A most-nested
function is one that occurs at an innermost position in the specification. The recur-
sive arguments of the most-nested function are selected as the induction variables,
and the recursion of the most-nested function as the type of induction. The recur-
sive arguments of the most-nested function should also be among the set of variables
that are arguments of the skolem function. The type of recursion of the program
will then correspond to the type of recursion of the most-nested function. While
this heuristic is sufficient for some simple examples, it performs as poorly as recur-
sion analysis in more complex examples. For example, for the (skolemized) quotient
remainder specification from [Biundo 89]

Vao,y. y # 0 — plus(times(car(f(z,y)), z), cdr(f(z,y))) =y A cdr(f(z,y)) <z,

the heuristic selects structural induction on y. While the system does find a proof,
the resulting program is unintuitive and inefficient.

Protzen [Protzen 94] presents a calculus for constructing induction proofs without
committing to an induction scheme at the outset. The ideas are closely related to
our middle-out reasoning approach, first presented in [Kraan et al 93b], except that
they are couched within a destructor style setting and a specialized proof system.
The idea is to generate induction hypotheses by rewriting the induction conclusion
until all structure introduced by the rewriting is in tolerable positions, i.e., surrounds
the conclusion or potential induction variables. Tolerable positions basically corre-
spond to our meta-variables. Additionally, Protzen’s calculus forces the induction
hypotheses to be smaller relative to a well-founded ordering. The approach has not,
to the best of our knowledge, been fully implemented yet. We have two concerns
with Protzen’s techniques. First, in our experience, the search space in such proofs
is very large and rather sensitive to how the rewriting is constrained. Hence carefully
designed search control is essential, and it is likely that, in practice, Protzen will
have to introduce heuristics to restrict the search to have a usable system. Second,
it is not clear whether the approach applies to universally quantified conjectures
only or also to existentially quantified and synthesis conjectures.

Hutter [Hutter 94] suggests a technique to select induction schemes for V3 for-
mulae which exploits the close relationship between the induction variables, the
instantiation of existential variables and the type of induction. Instead of selecting
induction variables and the type of induction and then finding instantiations of ex-
istential variables, Hutter picks induction variables and instantiations of existential
variables, leaving the type of induction to be determined in the course of the proof.
Hutter’s approach involves two steps: First, the selection of an induction variable
and an existential variable and second, the selection of the induction scheme. The
selection of the pair of variables is done in a preprocessing step bearing some sim-
ilarity to recursion analysis. First, all available wave rules are abstracted in that
the only information retained is the dominating function symbol and the direction
in which the wave front moves—up, down, or across. These abstracted rules are
called labeled fragments. The term tree of the conjecture is then searched to find a
path of labeled fragments such that all instances of a universal and an existential
variable are connected, but none of the fragments overlap. Such a path ensures
that there is wave rule that can move a wave front in the desired direction at every
relevant node. It does not consider the actual form of the wave front, however.
Once the variables have been selected, the actual proof is carried out. In the base
case, the existential variable is instantiated to the base of the corresponding type.
Then, symbolic evaluation is applied. The remaining formula is assumed as the
condition of the base case, which completes its proof. The negation of this formula
becomes the condition of the step case. In the step case, the existential variable
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is again instantiated, now to the compound case of the type, and the conclusion
is rippled. Once the rippling has terminated, the structure that has accumulated
around the induction variable determines its predecessor. As in our approach, the
well-foundedness of the induction order remains to be established. To the best of
our knowledge, the approach has not yet been implemented.

Hutter’s approach and ours are related. Both rely on the rippling of the step
case to determine the type of induction. Both require a certain amount of search,
Hutter’s in the preprocessing step, ours in the rippling. The main difference lies
in the fact that Hutter’s approach is divided into two steps. The preprocessing
corresponds to a lookahead into the rippling, albeit a simplified version. The trade-
off between our one-step and Hutter’s two-step approach is thus that Hutter’s does
some of the search in a simplified setting, which reduces the amount of search in
the actual rippling, but involves some duplication of effort. We search in the actual
rippling, which is more expensive, but we have no duplication of effort. Finally, the
preprocessing step of Hutter simply fails if a lemma is missing, since it cannot find
a path. This would pose a serious problem in proofs requiring propositional wave
rules, when, as in our system, these wave rules are generated on demand.

5 Extensions to Rippling

Synthesizing logic programs is a new application of proof planning and poses new
problems to the proof planner. While many of them are specific to program syn-
thesis, some of them can occur in proof planning in general. Methods developed to
solve these more general problems are presented together in this section.

5.1 Generating Logical Wave Rules

Initially, Pertwinkle used a library of around sixty wave rules based on schematic
lemmas about logical connectives. Rules (10) and (11) in section 3.4 are examples of
such rules. Considering the large number of such wave rules, it would be preferable
for Periwinkle to recognize the need for one and generate it on demand. A method
that does this has been implemented for a large subclass of logical wave rules, i.e.,
wave rules expressed in terms of propositional connectives only. Wave rule (10) is
propositional, whereas wave rule (11) is not, since it involves quantifiers.

The idea underlying the generation of propositional wave rules is that we can con-
jecture a partially specified lemma that gives rise to the desired wave rule. We then
try to fill in the missing part of the lemma by generating the truth table for that
part and finding a formula that satisfies that truth table. In the conclusion

.o ol = hV member(z,t) |,

for instance, the rippling is blocked. To ripple the right-hand side further, we need
a wave rule that pushes the negation down over the disjunction. The wave rule we
want is thus of the form

ﬂ‘PvQ‘:é F(=Q) |,

based on a lemma
~(PVQ) < F(-Q) ,

where F represents the unknown part. We need to find an expression F with the
same truth values as =(P V Q) containing a subterm —@Q. We proceed as follows:
First, we try the simple cases: —@) itself and its negation ——=¢). This fails, and
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we create a set of candidate expressions whose top-level connective is some binary
connective, with =@ as its first argument and an unknown expression F as its second
argument. In this example, we consider only conjunction and disjunction, though
the implementation also considers equivalence and implication. We construct the
candidate expressions and derive the truth tables for the second argument of the
top-level connective. The truth table for £ in =Q V FE is

PlQ|-(PVQ) | -Q| E
T\|T a a a
T|F a T X
| T a a a
F|F T T ||T/F
and the truth table for £ in =Q A E is
PlQ|-(PVQ) | -Q| E
T\|T a F |\|T/F
T|F a T a
| T a F |\|T/F
F|F T T T

In the column for E, T indicates that F must be true for the given values of
the variables P and ), F that F must be false, and T/F that E may be either
true or false. The symbol X indicates a conflict; no possible value is logically
consistent. Any formula with a conflict is discarded. We try to complete the
surviving candidates by finding a variable or a negation of a variable that satisfies
the derived truth table. In this example, the truth table for —=Q A F is satisfied
by =P. If no (negated) variable had satisfied the truth table for F, we would
have constructed more complex expressions using binary connectives. To cut down
on the search space, we restrict the first argument of any binary connective to a
propositional variable or its negation, but allow the second argument to be further
expanded.

This straightforward approach to generating propositional wave rules sufficed to
generate all propositional wave rules in our original database. However, it is not
clear whether it is complete. The problem lies in the syntactic restrictions that were
made to cut down the search space, and the question is whether there are wave rules
that cannot be expressed in the restricted syntactic form.

5.2 Existential Rippling and Unrolling

Rippling as portrayed in section 2 applies to theorems containing universal quan-
tifiers only, and cannot cope with existential quantifiers. To allow a wave rule to
apply to existential variables, we introduce existential versions of wave rules. In
essence, what an existential wave rule does is to partially instantiate an existential
variable to a wave term. A simple wave rule of the form

F||S[U] | = | T[F[U]]

can be turned into an existential wave rule

r=-1

TGP = o LG TFL )] -

To indicate that existential variables can be instantiated to wave terms, they are
annotated with potential wave fronts, represented as dashed boxes.
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There is a problem when applying existential rippling in logic program synthe-
sis. Wave rules used to rewrite subexpressions of equivalences must be based on
equivalence or equality. Unfortunately, existential versions of wave rules are not
necessarily equivalence-preserving. An example where the existential wave rule is
not equivalence-preserving is the synthesis conjecture that a list & occurs at the

back of a list [
Vk,l back(k,l) < Fx.app(x, k1) .
Applying structural induction on { yields the step case

Vh. back(k,[hi:t]) & F7} app( ik, [hut]) - (22)

Now, we would like to apply the wave rule

app(‘ Hy:Ty|, L,

H, ::Q‘) = | Hy = Hy Aapp(Ty, L, Ts) (23)

in its existential version

Jz) app((z], L,|H=T ) := |Fz1 . T2yt 2= H Napp(x2, L, T)|. (24)

While the lemma underlying (23)

Vhi,t1,1, ha,ta. app(hy ity haiits) & hy = hy Aapp(ty, [, t2)
holds, the equivalence that would justify (24)

VI, h,t. (3. app(z,l,ht)) < (Feg, x2. 21 = h Aapp(xa, 1, 1))

is a non-theorem (The left side is true, but the right side false for [ = h::t).

Thus, before we apply an existential version of wave rule, we must establish that
it is equivalence-preserving. (Dis-)Proving the underlying lemma, however, is a
difficult and expensive task and requires the full power of proof planning. Instead
of implementing a method for equivalence-preserving existential rippling, we have
developed a less expensive and more generally applicable alternative, unrolling.

In the step case (22), with (23) as the only available wave rule, rippling is blocked
from the outset by the existentially quantified variable z. Applying wave rule (23)
is clearly what is called for. For that, £ must be brought into the form .

This can be done by introducing an appropriate case split, i.e., one where one of
the cases is © = x1::25. The case split that lends itself is the one where z is either
the empty or a composite list.

When we apply the case split, we must preserve the skeleton of the conclusion and
put any additional structure introduced by the case split into a wave front. This is
achieved by annotating the case split accordingly. Schematically, a case split on =
in 3z :nat. P(x) is annotated as

P[0]V 3z :nat. P[s(z) |

In the back example, introducing a case split on z leads to the conclusion

Vk. back(k, ) & |app(nil, k, het) V 3eq. Ju,. app(, k, )
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to which wave rule (23) applies, yielding

Vk. back(k,) & |app(nil, k, het) vV ey, Jeg. |21 = h Aapp(xa, k, 1)

The step case can be completed with a further ripple and weak fertilization.

Currently, only case splits on the structure of recursive data types are considered,
both for existential and universal quantifiers. The method can be extended to cover
more complex case splits.

Unrolling is a speculative step and can cause non-termination. It is therefore con-
trolled in the same way as speculative rippling (see section 4.4). Tt is worth noting
the relationship between equivalence-preserving existential rippling and unrolling.
Applying an equivalence-preserving existential wave rule to a conclusion

Jy:nat. P(|s(z) | y)

yields a conclusion

3y inat. | F(P(z,y'))|. (25)

Unrolling initially yields

P(z,0)V 3y :nat. P(M, s(y)

Because the existential rewrite was equivalence-preserving, the case P(x,0) must
be false. Thus, after we simplify the wave front and apply the original version of
the wave rule, we also obtain (25).

5.3 Very Weak Fertilization

The techniques presented so far are mainly devised to allow rippling to continue. In
some cases, however, the blockage does not prevent further rippling, but fertilization.
Very weak fertilization is a method that recognizes one particular type of blockage
that occurs frequently when synthesizing relations from functions. It exploits the
induction hypothesis in a way that takes the blockage into account. Very weak
fertilization applies in particular in cases where we would like to weak fertilize, but
we cannot because the corresponding side of the conclusion is an equality that is not
yet fully rippled. A simple example where this occurs is the synthesis of a reverse
relation from a reverse function

Vil rrev(k,l) &  frev(k) =1,

where frev is defined as

frev(nil)
Vh,t. frev(h::t) = app(frev(t), h:nd) .

nil

From the frev definition, we get the wave rule

frev( H =T ) := |app(frev(T), H:nil) | . (26)

By structural induction on &, we obtain the step case
VI. rrev(t,l) & frev(t) =1 F Vi rrev(,l) o frev() =1
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Applying wave rule (26) yields

rrev(| hut| 1) & |app(frev(t), hunil) |=1 .

The rippling is now blocked. However, the wave hole on the right-hand side of the
equivalence, i.e., frev(t), is identical to the left-hand side of the equation on the
right-hand side of the equivalence of the induction hypothesis. Thus, if we can pull
the wave hole out of its nested position and into an equality, we can weak fertilize.
This can be achieved by introducing a new existential variable as a placeholder for
the wave hole and adding the equality between the new variable and the wave hole.
Schematically, this corresponds to applying the rewrite

(@) |=y:=|3y. o) =y Ap(x) =y (27)

which is not quite a wave rule because it does not entirely preserve the skele-
ton. The skeleton of the left-hand side is ¢(#) = y, that of the right-hand side
is ¥(x) = y', where 3 is a bound variable. The notion of rippling is currently
being extended to allow such rules as wave rules as well (see Bundy and Lombart

[Bundy & Lombart 95]).

In the example, using the existential variable [/, this yields
rrev(,l) [ app(l!, henil) =LA frev(t) =1

We can now exploit the induction hypothesis, since [, the variable corresponding to
" in the hypothesis, is universally quantified. We rewrite the conclusion to

rrev(, U« 3 app(l', henil) = L Arrev(t, ) .

Very weak fertilization solves a problem that arises in reasoning about relations
rather than functions. The need for this technique stems from the fact that we are
synthesizing a relational program from a non-tail-recursive function. The recursive
case of the reverse function frev is non-tail-recursive, i.e., its value is defined by a
function applied to the result of the recursive call. The flat structure of relations
makes such a nesting in the corresponding relation impossible. In the relational
case, such nestings can only be expressed by having the corresponding relations
share existential variables. Thus, to make progress in the synthesis of a relation, it
is necessary to unpack the nesting of functions by introducing existential variables.

6 Implementation and Results

6.1 Implementation

Periwinkle is an adaptation and extension of the CIAM-Ogyster system
[Bundy et al 90c]. C'IAM was designed as a planner to plan inductive proofs in type
theory. Recently, however, there has been an increased interest in using C'IAM for
other types of proofs, logics, and proof-checkers, and there is an ongoing effort into
making C'TAM less logic-dependent. At the object level, Oyster is being replaced
by an interactive proof checking shell Mollusc [Richards et al 94], which, given a
specification of a logic, becomes a proof checker for that logic. Using Mollusc, we
implemented a proof checker for many-sorted first-order predicate logic with equal-
ity and induction, following the Gentzen System G- from [Gallier 86] and adding
appropriate induction rules.
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At the planning level, C'IAM needed to be adapted to first-order predicate logic
with equality. Beyond the syntax-related adaptations, CIAM was extended in a
number of ways. First, the middle-out reasoning presented here required higher-
order pattern unification and a higher-order representation of annotations. Second,
we implemented code to handle auxiliary syntheses. Finally, we implemented the
new methods and auxiliary code related to these.

6.2 Synthesized Programs

One of our aims was to improve on the results achieved by known synthesis sys-
tems, particularly in terms of automation and selection of induction schemes. Three
examples from the literature are of special importance: subset from Lau and Prest-
wich [Lau & Prestwich 88], delete from Bundy et al [Bundy et al 90b] and ¢r from
Biundo [Biundo 89]. For the first two examples, the aim was to fully automate
the synthesis, which, in the literature, was semi-automatic or interactive. For the
last example, the aim was to synthesize a better algorithm by finding a more ap-
propriate induction. Periwinkle is able to synthesize good programs for all of the
specifications automatically and can thus be considered to have achieved its aims.

The problems taken from the literature can be summarized as follows: The subset
example [Lau & Prestwich 88]

Va,y. subset(z,y) < (Vz.member(z, ) — member(z,y))

posed the problems of rippling using logical wave rules (see section 5.1) and con-
trolling the rippling to avoid non-termination (see section 4.4). While the synthesis
requires three instances of user interaction in [Lau & Prestwich 88], it requires none
in Periwinkle. The delete example [Bundy et al 90b]

Va,y, z. delete(x,y,z) —  (3k, L. fapp(k,l) = y A fapp(k,z::l) = 2)

contains nested quantifiers which require unrolling (see section 5.2). This example,
which had not yet been automated at all, is also done automatically by Periwinkle.
A remaining problem with the synthesis of delete is that it requires a lemma about
the append function fapp,

Vil fapp(k,l) =nil & k=nil ANl =nil.
Finally, the quotient remainder example ¢r from [Biundo 89]
Ve, y,q,r.qr(z,y,q,r) & gxXxae+r=y Ar<zx

requires middle-out induction (see section 4) and auxiliary syntheses (see sec-
tion 3.5). Biundo’s heuristic selects structural induction on y, which leads to an
inefficient, unintuitive program. Periwinkle chooses a more appropriate induction,
namely one where the induction terms for w and y are s(w) and y+ z, respectively,
which leads to a simpler, more efficient program. The synthesis of gr requires three
lemmas, the associativity of plus, a variant of the cancellation of plus and a lemma
on < and plus

Va,y, z. plus(z, plus(y, z)) = plus(plus(x,y), 2)
Va,y, z. plus(z,y) = plus(z,z) & y==z
Ve,y,z. (z < x = plus(z,y) = z) < false .

Table 1 gives an overview of other problems solved by Periwinkle. All plans were
constructed using middle-out induction. For more detail on the specifications, pro-
grams and proofs, see [Kraan 94]. The examples fall into three categories:
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Name Description Planning | Plan
time execution
time
add3 Addition relation for three numbers 9.5 5.8
app_length Combined length of two lists 10.9 5.8
back see section 5.2 14.0 5.6
be fore An element precedes another in a list 39.1 19.2
between A number is between two numbers 34.2 4.9
delete see above 95.0 31.3
even see section 4.1 7.2 4.7
nsert Insert an element before another in a list 124.8 37.8
mazx see section 3.5 30.4 10.4
not_member | Non-membership in a list 9.1 3.0
qr see above 42.1 12.9
rapp Append relation 9.4 3.7
rplus Addition relation 6.0 3.6
rrev see section 5.3 8.4 4.6
rtimes Multiplication relation 6.8 5.3
subset see above 21.2 5.0

Table 1: Programs synthesized by Periwinkle. Planning and plan execution times
are for main syntheses in seconds of CPU time on a Sparc station 10 using Quintus
Prolog Release 3.1.4.

1. Synthesizing relations from functions. Such relational programs have the ad-
vantage that they can be run in various modes. Thus, for instance, an addition
relation can also be used for subtraction. Examples programs are rapp, rplus,
rtimes and rrev.

2. Synthesizing programs from specifications containing quantified and negated
relations. Examples programs are delete, subset and max.

3. Synthesizing more efficient programs from executable but less efficient pro-
grams. An example program is between.

It would not be fair to omit examples that we would have liked to synthesize, but
failed to. These include sorting and partitioning lists. The former fails because
Periwinkle lacks relational rippling (see section 7.3), the latter because Periwinkle
is not able to find a required case split.

7 Future Research

7.1 Synthesis

The work in this paper has concentrated on the fully automatic synthesis of recursive
logic programs that are partially correct and complete. The system currently tries to
find a recursive program, but does not prefer any one type of recursion over another.
A useful extension to the system would be to allow the user to specify constraints
on the program, for instance by giving the complexity or type of recursion of the
program, or by requiring that the program be tail-recursive. Allowing the user to
determine the recursive structure of the program would shift the challenge to the
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proof planner from finding appropriate inductions to finding wave rules, since the
induction of the proof is determined from the outset.

7.2 Middle-Out Induction

In middle-out induction, the instantiation of the meta-variables is used as an index
into the database of induction schemes. Currently, middle-out induction fails if
the ordering determined in the rippling is not among the set of known orderings.
However, it may be possible to “salvage” the induction. For instance, the ordering
may be a combination of known orderings. Alternatively, there may be an ordering
corresponding to the instantiation of a subset of the meta-variables. In the latter
case, the step case would have to be patched by introducing an appropriate case split
on the non-induction variable. Ideally, however, the proof planner would not have
to rely on a set of known induction schemes, but would use general well-founded
induction and prove the well-foundedness of the ordering.

7.3 Rippling
7.3.1 Search Control

The control of rippling in middle-out induction poses a considerable challenge. Most
importantly, rippling needs to be controlled so that the search space is kept within
reasonable bounds and non-termination is avoided. In section 4.4, this was achieved
by a simple mechanism, i.e., allowing only one speculative step. Although allowing
no more than one speculative step ensures termination, it also cuts the search space
down too far—there are proofs which require more than one speculative step. An
example requiring two speculative steps is

Yw, z,y, z. plus(w, x) = plus(y, #) < plus(w, z) = plus(y, z) .

With only one speculative step, a blockage occurs that prevents fertilization. What
is needed is global control over speculative steps such as speculative rippling, gen-
eralization, and lemma conjecturing. Such global control can be provided by the
planning critics of Ireland [Ireland & Bundy ], which, given a failed proof planning
attempt, analyze it and suggest ways of correcting it. In the case of middle-out
induction, the method and its critic would work together as follows: The method
allows an initial speculative ripple to begin rippling. Then, it allows only definite
rippling and fertilization. If the rippling fails, the critic can analyze the rippling
and suggest the appropriate measure—another speculative ripple, a lemma or a
generalization.

7.3.2 Rippling with Relations

The class of programs we can synthesize so far is limited mainly because rippling
as presented by Bundy et al [Bundy et al 93] is based on nested functions. The
idea of a wave rule is precisely that it moves constructors or functions up from
a nested position. To extend the class of logic programs we can synthesize, the
notion of rippling needs to be extended to relations. Relations cannot be nested
like functions, but a similar effect is achieved by existentially quantified variables
that are arguments of more than one literal. Take, for instance, the step cases of
standard functional and relational definitions of list reversal

Vh,t. frev(h:t) = append(frev(t), h:nil) (28)
Vh,t. rrev(h:t,l) < 3. rrev(t, ') A append(l', hinil,l) . (29)
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While (28) gives rise to a wave rule

frev(| H =T ) := |append(frev(T), H::nil) |,

(29) currently does not. The rule

rrev(, L) := 3. rrev(T, ") Aappend(l’, H::nil, L)

is not a wave rule in the traditional sense because the skeleton of the left-hand side,
rrev(T, L), and the skeleton of the right-hand side, rrev(T,!’), are not identical.
This “almost” wave rule is very similar to the schematic rewrite (27) in section 5
in that they both preserve the skeleton except for the names of bound variables.
Such rules are clearly within the spirit of rippling, and the notion of rippling is be-
ing extended to cope with them (see Bundy and Lombart [Bundy & Lombart 95]).
Relational rippling would enable us to synthesize a large number of programs that
are currently beyond the capabilities of the system.

8 Conclusions

In this paper, we have investigated the application of proof planning to the auto-
matic synthesis of logic programs via inductive proofs. The work developed out of
existing work in middle-out reasoning [Bundy et al 90a] and in proofs-as-programs
for logic program synthesis [Bundy et al 90b]. The main goals were to synthesize
relational programs and to automate the synthesis process. Our work makes four
principal contributions:

1. We have applied middle-out reasoning to new applications and have shown
how to extend it to overcome related search problems. For example, we show
how search arising in higher-order unification can be restricted by the use of
higher-order patterns.

2. We have shown that middle-out reasoning is a mechanism through which proof
planning can be used to synthesize logic programs fully automatically.

3. We have provided evidence that middle-out reasoning provides an elegant
and effective mechanism to select induction schemes. Middle-out induction
has made the class of synthesis theorems, for which existing techniques often
fail, amenable to automatic proof.

4. We have provided new techniques for unblocking rippling when the blockage
is caused by missing wave rules on propositional connectives or by nested
quantifiers.

Although we are still far away from automatically synthesizing complex programs
from formal specifications, we have made progress towards that goal by automating
some of the steps that are traditionally considered Eureka steps, and are therefore
normally left to the user. Middle-out reasoning has played a crucial role in this
success by providing a elegant framework for speculation, and we believe that its
potential is far from exhausted.
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