22 research outputs found

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Data from: Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes

    No full text
    AIMS: Elucidation of different physico-chemical parameters and the secretory enzymes released by Talaromyces verruculosus SGMNPf3 during cellulosic biomass degradation. METHODS AND RESULTS: We determined the optimal pH, temperature and time course parameters for the efficient degradation of different natural and commercial cellulosic substrates by T. verruculosus SGMNPf3, previously isolated from a forest soil. The optimal growth of the fungus and production of its cellulases were obtained when the culture condition was maintained at pH 3·3 and temperature 30°C. Activity of the crude cellulases was maximum at 60°C. Activity of cellulase enzymes produced on natural cellulose substrates was higher than that on commercial cellulose substrates. A continuous increase in cellulase activity at different time points indicated no apparent end product inhibition. This might be attributed to the high individual cellulases, notably β-glucosidase (316·1 μmol g(-1) ) production. Zymogram of extracellular crude proteins showed two dominant extracellular protein bands of molecular weight 72·3 and 61·4 kDa, indicating their cellulolytic nature. MALDI-TOF and LC-MS/MS analysis of the 2DE spots also identified several enzymes including β-glucosidase involved in the process of cellulose degradation. CONCLUSIONS: Based on its optimal parameters for cellulolytic activities, we suggest that the fungus is acido-mesophilic. There was apparently no end-product inhibition of the cellulase activity and this is attributed to the ability of the fungus to produce sufficient β-glucosidase. The dominant proteins secreted by the fungus were confirmed to be cellulases. SIGNIFICANCE AND IMPACT OF THE STUDY: The high individual cellulase activities, better cellulase production on natural substrates and apparent absence of end-product inhibition are characteristics of T. verruculosus SGMNPf3 for use in harvesting naturally endowed energy in cellulosic biomass

    Quantifying the connections: linkages between land-use and water in the Kathmandu Valley, Nepal

    No full text
    Land development without thoughtful water supply planning can lead to unsustainability. In practice, management of our lands and waters is often unintegrated. We present new land-use, ecological stream health, water quality, and streamflow data from nine perennial watersheds in the Kathmandu Valley, Nepal, in the 2016 monsoon (i.e., August and September) and 2017 pre-monsoon (i.e., April and May) periods. Our goal was to improve understanding of the longitudinal linkages between land-use and water. At a total of 38 locations, the Rapid Stream Assessment (RSA) protocol was used to characterize stream ecology, basic water quality parameters were collected with a handheld WTW multi-parameter meter, and stream flow was measured with a SonTek FlowTracker Acoustic Doppler Velocimeter. A pixel-based supervised classification method was used to create a 30-m gridded land use coverage from a Landsat 8 image scene captured in the fall of 2015. Our results indicated that land-use had a statistically significant impact on water quality, with built land-uses (high and low) having the greatest influence. Upstream locations of six of the nine watersheds investigated had near natural status (i.e., river quality class (RQC) 1) and water could be used for all purposes (after standard treatments as required). However, downstream RSA measurements for all nine watersheds had RQC 5 (i.e., most highly impaired). Generally, water quality deteriorated from monsoon 2016 to pre-monsoon 2017. Our findings reinforce the importance of integrated land and water management and highlight the urgency of addressing waste management issues in the Kathmandu Valley.Water ResourcesTransport and Logistic
    corecore