3,222 research outputs found
The quantum dynamic capacity formula of a quantum channel
The dynamic capacity theorem characterizes the reliable communication rates
of a quantum channel when combined with the noiseless resources of classical
communication, quantum communication, and entanglement. In prior work, we
proved the converse part of this theorem by making contact with many previous
results in the quantum Shannon theory literature. In this work, we prove the
theorem with an "ab initio" approach, using only the most basic tools in the
quantum information theorist's toolkit: the Alicki-Fannes' inequality, the
chain rule for quantum mutual information, elementary properties of quantum
entropy, and the quantum data processing inequality. The result is a simplified
proof of the theorem that should be more accessible to those unfamiliar with
the quantum Shannon theory literature. We also demonstrate that the "quantum
dynamic capacity formula" characterizes the Pareto optimal trade-off surface
for the full dynamic capacity region. Additivity of this formula simplifies the
computation of the trade-off surface, and we prove that its additivity holds
for the quantum Hadamard channels and the quantum erasure channel. We then
determine exact expressions for and plot the dynamic capacity region of the
quantum dephasing channel, an example from the Hadamard class, and the quantum
erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections;
v3 has correction regarding the optimizatio
A dynamical model for quantum memory channels
A dynamical model for quantum channel is introduced which allows one to pass
continuously from the memoryless case to the case in which memory effects are
present. The quantum and classical communication rates of the model are defined
and explicit expression are provided in some limiting case. In this context we
introduce noise attenuation strategies where part of the signals are sacrificed
to modify the channel environment. The case of qubit channel with phase damping
noise is analyzed in details.Comment: 11 pages, 4 figures; minor correction adde
Comment on "The black hole final state"
Horowitz and Maldacena have suggested that the unitarity of the black hole
S-matrix can be reconciled with Hawking's semiclassical arguments if a
final-state boundary condition is imposed at the spacelike singularity inside
the black hole. We point out that, in this scenario, departures from unitarity
can arise due to interactions between the collapsing body and the infalling
Hawking radiation inside the event horizon. The amount of information lost when
a black hole evaporates depends on the extent to which these interactions are
entangling.Comment: 4 pages, REVTe
Simple test for quantum channel capacity
Basing on states and channels isomorphism we point out that semidefinite
programming can be used as a quick test for nonzero one-way quantum channel
capacity. This can be achieved by search of symmetric extensions of states
isomorphic to a given quantum channel. With this method we provide examples of
quantum channels that can lead to high entanglement transmission but still have
zero one-way capacity, in particular, regions of symmetric extendibility for
isotropic states in arbitrary dimensions are presented. Further we derive {\it
a new entanglement parameter} based on (normalised) relative entropy distance
to the set of states that have symmetric extensions and show explicitly the
symmetric extension of isotropic states being the nearest to singlets in the
set of symmetrically extendible states. The suitable regularisation of the
parameter provides a new upper bound on one-way distillable entanglement.Comment: 6 pages, no figures, RevTeX4. Signifficantly corrected version. Claim
on continuity of channel capacities removed due to flaw in the corresponding
proof. Changes and corrections performed in the part proposing a new upper
bound on one-way distillable etanglement which happens to be not one-way
entanglement monoton
Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding
We determine the optimal rates of universal quantum codes for entanglement
transmission and generation under channel uncertainty. In the simplest scenario
the sender and receiver are provided merely with the information that the
channel they use belongs to a given set of channels, so that they are forced to
use quantum codes that are reliable for the whole set of channels. This is
precisely the quantum analog of the compound channel coding problem. We
determine the entanglement transmission and entanglement-generating capacities
of compound quantum channels and show that they are equal. Moreover, we
investigate two variants of that basic scenario, namely the cases of informed
decoder or informed encoder, and derive corresponding capacity results.Comment: 45 pages, no figures. Section 6.2 rewritten due to an error in
equation (72) of the old version. Added table of contents, added section
'Conclusions and further remarks'. Accepted for publication in
'Communications in Mathematical Physics
Entanglement measures and approximate quantum error correction
It is shown that, if the loss of entanglement along a quantum channel is
sufficiently small, then approximate quantum error correction is possible,
thereby generalizing what happens for coherent information. Explicit bounds are
obtained for the entanglement of formation and the distillable entanglement,
and their validity naturally extends to other bipartite entanglement measures
in between. Robustness of derived criteria is analyzed and their tightness
compared. Finally, as a byproduct, we prove a bound quantifying how large the
gap between entanglement of formation and distillable entanglement can be for
any given finite dimensional bipartite system, thus providing a sufficient
condition for distillability in terms of entanglement of formation.Comment: 7 pages, two-columned revtex4, no figures. v1: Deeply revised and
extended version: different entanglement measures are separately considered,
references are added, and some remarks are stressed. v2: Added a sufficient
condition for distillability in terms of entanglement of formation; published
versio
Probabilistic instantaneous quantum computation
The principle of teleportation can be used to perform a quantum computation
even before its quantum input is defined. The basic idea is to perform the
quantum computation at some earlier time with qubits which are part of an
entangled state. At a later time a generalized Bell state measurement is
performed jointly on the then defined actual input qubits and the rest of the
entangled state. This projects the output state onto the correct one with a
certain exponentially small probability. The sufficient conditions are found
under which the scheme is of benefit.Comment: 4 pages, 1 figur
Secrecy Results for Compound Wiretap Channels
We derive a lower bound on the secrecy capacity of the compound wiretap
channel with channel state information at the transmitter which matches the
general upper bound on the secrecy capacity of general compound wiretap
channels given by Liang et al. and thus establishing a full coding theorem in
this case. We achieve this with a stronger secrecy criterion and the maximum
error probability criterion, and with a decoder that is robust against the
effect of randomisation in the encoding. This relieves us from the need of
decoding the randomisation parameter which is in general not possible within
this model. Moreover we prove a lower bound on the secrecy capacity of the
compound wiretap channel without channel state information and derive a
multi-letter expression for the capacity in this communication scenario.Comment: 25 pages, 1 figure. Accepted for publication in the journal "Problems
of Information Transmission". Some of the results were presented at the ITW
2011 Paraty [arXiv:1103.0135] and published in the conference paper available
at the IEEE Xplor
Entanglement-assisted quantum low-density parity-check codes
This paper develops a general method for constructing entanglement-assisted
quantum low-density parity-check (LDPC) codes, which is based on combinatorial
design theory. Explicit constructions are given for entanglement-assisted
quantum error-correcting codes (EAQECCs) with many desirable properties. These
properties include the requirement of only one initial entanglement bit, high
error correction performance, high rates, and low decoding complexity. The
proposed method produces infinitely many new codes with a wide variety of
parameters and entanglement requirements. Our framework encompasses various
codes including the previously known entanglement-assisted quantum LDPC codes
having the best error correction performance and many new codes with better
block error rates in simulations over the depolarizing channel. We also
determine important parameters of several well-known classes of quantum and
classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review
Quantum networks reveal quantum nonlocality
The results of local measurements on some composite quantum systems cannot be
reproduced classically. This impossibility, known as quantum nonlocality,
represents a milestone in the foundations of quantum theory. Quantum
nonlocality is also a valuable resource for information processing tasks, e.g.
quantum communication, quantum key distribution, quantum state estimation, or
randomness extraction. Still, deciding if a quantum state is nonlocal remains a
challenging problem. Here we introduce a novel approach to this question: we
study the nonlocal properties of quantum states when distributed and measured
in networks. Using our framework, we show how any one-way entanglement
distillable state leads to nonlocal correlations. Then, we prove that
nonlocality is a non-additive resource, which can be activated. There exist
states, local at the single-copy level, that become nonlocal when taking
several copies of it. Our results imply that the nonlocality of quantum states
strongly depends on the measurement context.Comment: 4 + 3 pages, 4 figure
- …
