11 research outputs found

    Seasonal modulation of mesoscale processes alters nutrient availability and plankton communities in the Red Sea

    Get PDF
    Hydrographic and atmospheric forcing set fundamental constraints on the biogeochemistry of aquatic ecosystems and manifest in the patterns of nutrient availability and recycling, species composition of communities, trophic dynamics, and ecosystem metabolism. In the Red Sea, latitudinal gradients in environmental conditions and primary production have been ascribed to fluctuations in Gulf of Aden Water inflow, upwelling/mixing, and regenerated nutrient utilization i.e. rapidly recycled nitrogen in upper layers. However, our understanding of upper layer dynamics and related changes in plankton communities, metabolism and carbon and nitrogen export is limited. We surmised that stratification and mesoscale eddies modulate the nutrient availability and taxonomic identity of plankton communities in the Red Sea. Based on remote-sensing data of sea level anomalies and high resolution in situ measurements (ScanFish) we selected stations for hydrographic CTD profiles, water sampling (nutrients, seawater oxygen stable isotopes [δ18OSW]), phytoplankton and zooplankton collections. In fall 2014, strong stratification subjected the plankton community to an overall nitrogen and phosphorus shortage. The nutrient deficiency increased numbers of heterotrophic dinoflagellates, microzooplankton, and diazotrophs (Trichodesmium, diatom-diazotroph associations [DDAs]), albeit largely decreased phytoplankton and mesozooplankton abundances. In spring 2015, mesoscale eddies increased the nutrient availability, and the thermohaline characteristics and low δ18OSW point to the interaction of eddies with Gulf of Aden Surface Water (GASW). Cyclonic eddies and, most likely, the availability of nutrients associated with the GASW, increased the abundances of autotrophs (diatoms, Prasinophytes) and supported larger numbers of zooplankton and their larvae. We demonstrate that the interplay of stratification, advection of Gulf of Aden water and mesoscale eddies are key elements to better understand changes in plankton community composition, ecosystem metabolism, and macronutrient export in the Red Sea in space and time

    Role of Ecohydrographical Barriers on the Spatio-Temporal Distribution of Chaetognath Community in the Gulf of Aqaba during Summer

    No full text
    The Gulf of Aqaba (GoA), positioned between the Sinai Peninsula and the Saudi Arabian coast is characterized by its uniquely high saline, oligotrophic waters, and seasonally stratified hydrography. Despite its geographical significance, information on its zooplankton ecology and biodiversity is still meager. Hence, the present study was aimed to investigate the detailed diversity and ecology of the dominant carnivorous zooplankton taxon chaetognath in the pelagic waters of the GoA during summer. Despite the known water flow exchange between the GoA and the Red Sea, only five chaetognath species were observed in GoA which is markedly less than the number earlier recorded in the Red Sea, indicating the role of high saline water mass as an ecophysiological boundary for the inhabitance of many epipelagic chaetognaths. Euryhaline, Serratosagitta pacifica formed the dominant species in both the surface water and the upper 200 m water column and was observed to be the most suitable representative of this high saline environment. Conspicuous diel variability in the distribution of the different growth stages of chaetognaths in the surface waters can be attributed to their varied susceptibility to visually oriented predators. The positive relation observed in the abundance of chaetognaths and their main prey, copepods, and their carbon and nitrogen contents indicated their significance in the pelagic trophic ecology of the GoA. The present study, providing the ecology of a major zooplankton taxon of this unique basin will be relevant for understanding the ecology and trophodynamics of the zooplankton community of the GoA

    Latitudinal environmental gradients and diel variability influence abundance and community structure of Chaetognatha in Red Sea coral reefs

    No full text
    The Red Sea has been recognized as a unique region to study the effects of ecohydrographic gradients at a basin-wide scale. Its gradient of temperature and salinity relates to the Indian Ocean monsoon and associated wind-driven transport of fertile and plankton-rich water in winter from the Gulf of Aden into the Red Sea. Subsequent evaporation and thermohaline circulation increase the salinity and decrease water temperatures toward the North. Compared with other ocean systems, however, relatively little is known about the zooplankton biodiversity of the Red Sea and how this relates to Red Sea latitudinal gradients. Among the most abundant zooplankton taxa are Chaetognatha, which play an important role as secondary consumers in most marine food webs. Since Chaetognatha are sensitive to changes in temperature and salinity, we surmised latitudinal changes in their biodiversity, community structure and diel variability along the coast of Saudi Arabia. Samples were collected at nine coral reefs spanning approximately 1500 km, from the Gulf of Aqaba in the northern Red Sea to the Farasan Archipelago in the southern Red Sea. Thirteen Chaetognatha species belonging to two families (Sagittidae and Krohnittidae) were identified. Latitudinal environmental changes and availability of prey (i.e. Copepoda, Crustacea) altered Chaetognatha density and distribution. The cosmopolitan epiplanktonic Flaccisagitta enflata (38.1%) dominated the Chaetognatha community, and its abundance gradually decreased from South to North. Notable were two mesopelagic species (Decipisagitta decipiens and Caecosagitta macrocephala) in the near-reef surface mixed layers at some sites. This was related to wind-induced upwelling of deep water into the coral reefs providing evidence of trophic oceanic subsidies. Most Sagittidae occurred in higher abundances at night, whereas Krohnittidae were more present during the day. Chaetognatha with developing (stage II) or mature ovaries (stage III) were more active at night, demonstrating stage-specific diel vertical migration as a potential predator avoidance strategy

    Role of Ecohydrographical Barriers on the Spatio-Temporal Distribution of Chaetognath Community in the Gulf of Aqaba during Summer

    No full text
    The Gulf of Aqaba (GoA), positioned between the Sinai Peninsula and the Saudi Arabian coast is characterized by its uniquely high saline, oligotrophic waters, and seasonally stratified hydrography. Despite its geographical significance, information on its zooplankton ecology and biodiversity is still meager. Hence, the present study was aimed to investigate the detailed diversity and ecology of the dominant carnivorous zooplankton taxon chaetognath in the pelagic waters of the GoA during summer. Despite the known water flow exchange between the GoA and the Red Sea, only five chaetognath species were observed in GoA which is markedly less than the number earlier recorded in the Red Sea, indicating the role of high saline water mass as an ecophysiological boundary for the inhabitance of many epipelagic chaetognaths. Euryhaline, Serratosagitta pacifica formed the dominant species in both the surface water and the upper 200 m water column and was observed to be the most suitable representative of this high saline environment. Conspicuous diel variability in the distribution of the different growth stages of chaetognaths in the surface waters can be attributed to their varied susceptibility to visually oriented predators. The positive relation observed in the abundance of chaetognaths and their main prey, copepods, and their carbon and nitrogen contents indicated their significance in the pelagic trophic ecology of the GoA. The present study, providing the ecology of a major zooplankton taxon of this unique basin will be relevant for understanding the ecology and trophodynamics of the zooplankton community of the GoA

    Ecohydrographic control on the community structure and vertical distribution of pelagic Chaetognatha in the Red Sea

    Get PDF
    The present study details the effects of basin-scale hydrographic characteristics of the Red Sea on the macroecology of Chaetognatha, a major plankton component in the pelagic realm. The hydrographic attributes and circulation of the Red Sea as a result of its limited connection with the northern Indian Ocean make it a unique ecohydrographic region in the world ocean. Here, we aimed to identify the prime determinants governing the community structure and vertical distribution of the Cheatognatha in this ecologically significant world ocean basin. The intrusion of Gulf of Aden Water influenced the Chaetognatha community composition in the south, whereas the overturning circulation altered their vertical distribution in the north. The existence of hypoxic waters (< 100 µmol kg−1) at mid-depth also influenced their vertical distribution. The detailed evaluation of the responses of the different life stages of Chaetognatha revealed an increased susceptibility of adult individuals to hypoxic waters compared to immature stages. Higher oxygen demands of the adults for the egg and sperm production might have prevented them from inhabiting the oxygen-deficient mid-depth zones. The carbon and nitrogen content of the Copepoda and Chaetognatha communities and the quantification of the predation impact of Chaetognatha on Copepoda based on the feeding rate helped in corroborating the significant trophic link between these two prey–predator taxa. The observed influences of physical and chemical attributes on the distribution of Chaetognatha can be used as a model example for the role of the hydrography on the zooplankton community of the Red Sea

    Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    No full text
    Highlights: • The natural ecohydrographic gradient of the Red Sea translates into an isoscape. • The Red Sea isoscape features increasing zooplankton δ15 N values towards the South. • Isotopic baseline variations propagate through the pelagic food web. • Eddy-induced upwelling modifies the natural ecohydrographic North-South gradient. Abstract: Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation. Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: (a) monsoon-related intrusions of nutrient-rich Indian Ocean water; (b) basin scale thermohaline circulation; (c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; (d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and (e) the deposition of dust and aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28′ to 26°57′N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of POM in the South, and of small phytoplankton in the central Red Sea. Consistent variation across taxonomic and trophic groups at latitudinal scale, corresponding with patterns of nutrient stoichiometry and phytoplankton composition, indicates that the zooplankton ecology in the Red Sea is largely influenced by hydrographic features. It suggests that the primary ecohydrography of the Red Sea is driven not only by the thermohaline circulation, but also by mesoscale activities that transports nutrients to the upper water layers and interact with the general circulation pattern. Ecohydrographic features of the Red Sea, therefore, aid in explaining the observed configuration of its isoscape at the macroecological scale

    A systematic literature assessment on the effects of human-altered soundscapes on marine life

    No full text
    A dataset containing the results of a systematic assessment of the literature on the effects of human-altered soundscapes on marine life. This identified 538 peer-reviewed papers that consider how changes in anthrophony, geophony, and biophony affect marine fauna. Papers on the effects of anthrophony are categorised by species, taxonomic group, effect category, statistical outcome, and whether mitigation strategies were tested. Papers considering changes in bio- or geo-phony contain details on the ecosystem where responses were measured, the effect shown, and the statistical outcome

    The soundscape of the Anthropocene ocean

    Get PDF
    Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean
    corecore