72 research outputs found

    Tetrazine-Triggered Release of Carboxylic-Acid-Containing Molecules for Activation of an Anti-inflammatory Drug.

    Get PDF
    In addition to its use for the study of biomolecules in living systems, bioorthogonal chemistry has emerged as a promising strategy to enable protein or drug activation in a spatially and temporally controlled manner. This study demonstrates the application of a bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction to cleave trans-cyclooctene (TCO) and vinyl protecting groups from carboxylic acid-containing molecules. The tetrazine-mediated decaging reaction proceeded under biocompatible conditions with fast reaction kinetics (<2 min). The anti-inflammatory activity of ketoprofen was successfully reinstated after decaging of the nontoxic TCOprodrug in live macrophages. Overall, this work expands the scope of functional groups and the application of decaging reactions to a new class of drugs

    A holistic framework of corporate website favourability

    Get PDF
    This paper extends the current knowledge of corporate website favourability (CWF) by developing a comprehensive conceptual model of its influence on corporate image, corporate reputation, loyalty and identification. The paper reviews previous studies on corporate websites from the perspectives of marketing, management, corporate identity and corporate visual identity in order to inform our understanding of the antecedents and consequences of CWF. The propositions and the conceptual framework present an approach by which a corporation can design and manage a favourable corporate website. A number of important contributions are offered: First, the paper adds to the understanding of CWF; second, it discusses the antecedents of CWF by drawing upon the existing literature; third, it is beneficial for practitioners in shaping CWF strategies, and fourth, it offers possible consequences of CWF and provides a framework for future testing

    May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension (vol 40, pg 2006, 2019)

    Get PDF

    Micro- and nanopyramids of Manganese-Doped Indium Oxide

    No full text
    Mn-doped In(2)O(3) nanopyramids have been grown by a catalyst-free thermal process at 700 degrees C using InN and Mn(2)O(3) powders as precursors. Energy dispersive spectroscopy, as well as X-ray photoelectron spectroscopy, demonstrate the presence of Mn in the pyramids in a content below 1 at. %. In addition to pyramids, nanowires with diameters of about 100 nm grow during treatments at 800 degrees C. Luminescence has been studied by cathodoluminescence in the scanning electron microscope, showing emissions at 1.9, 2.65, and 3.3 eV. Dopant incorporation into the nanostructures and their oxidation states, as well as the effect on the electronic structure, have been measured and discussed
    corecore