24 research outputs found

    Phosphors: synthesis and applications

    No full text

    Effect of magnesium chloride on growth, crystalline perfection, structural, optical, thermal and NLO behavior of gamma-glycine crystals

    No full text
    In the present study, single crystals of gamma-glycine possessing excellent non-linear optical properties were successfully grown at room temperature in the presence of magnesium chloride (MgCl2) for the first time by using the slow solvent evaporation method. The second harmonic conversion efficiency of gamma-glycine crystal was determined using Kurtz powder technique with Nd:YAG laser and was found to be 6 times greater than that of the standard inorganic sample potassium dihydrogen phosphate (KDP). The crystalline perfection of the grown crystal was analyzed using high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The grown crystal was subjected to single crystal XRD and powder XRD, which confirmed that the crystal has hexagonal structure and belongs to space group P3(1). Inductively coupled plasma optical emission spectrometry (ICP-OES) was carried out to quantify the concentration of Mg element in the grown gamma-glycine single crystal. Fourier transform infrared (FUR) spectral studies were made to identify the functional groups. The optical band gap was likewise estimated for gamma-glycine crystal using UV-vis-NIR study. The optical measurements of gamma-glycine crystal helped to calculate the optical constants such as refractive index (n), the extinction coefficient (K), electric susceptibility (chi(c)) and both the real (epsilon(r)) and imaginary (epsilon(i)) components of the dielectric permittivity functions of photon energy, which is essentially required to develop optoelectronic devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study thermal stability and decomposition point of the grown crystal

    Investigations on anticancer activity of Eu3+ doped hydroxyapatite nanocomposites against MCF7 and 4T1 breast cancer cell lines: A structural and luminescence Perspective

    No full text
    Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective

    Enhanced Supercapacitive Performance of Higher-Ordered 3D-Hierarchical Structures of Hydrothermally Obtained ZnCo2O4 for Energy Storage Devices

    No full text
    The demand for eco-friendly renewable energy resources as energy storage and management devices is increased due to their high-power density and fast charge/discharge capacity. Recently, supercapacitors have fascinated due to their fast charge–discharge capability and high-power density along with safety. Herein, the authors present the synthesis of 3D-hierarchical peony-like ZnCo2O4 structures with 2D-nanoflakes by a hydrothermal method using polyvinylpyrrolidone. The reaction time was modified to obtain two samples (ZCO-6h and ZCO-12h) and the rest of the synthesis conditions were the same. The synthesized structures were systematically studied through various techniques: their crystalline characteristics were studied through XRD analysis, their morphologies were inspected through SEM and TEM, and the elemental distribution and oxidation states were studied by X-ray photoelectron spectroscopy (XPS). ZCO-12h sample has a larger surface area (55.40 m2·g−1) and pore size (24.69 nm) than ZCO-6h, enabling high-speed transport of ions and electrons. The ZCO-12h electrode showed a high-specific capacitance of 421.05 F·g−1 (31.52 C·g−1) at 1 A·g−1 and excellent cycle performance as measured by electrochemical analysis. Moreover, the morphologic characteristics of the prepared hierarchical materials contributed significantly to the improvement of specific capacitance. The excellent capacitive outcomes recommend the 3D-ZnCo2O4 hierarchical peony-like structures composed of 2D-nanoflakes as promising materials for supercapacitors with high-performance

    Crystal growth and characterization of gamma-glycine grown from potassium fluoride for photonic applications

    No full text
    Single crystals of γ-glycine, an organic nonlinear optical material have been synthesized in the presence of potassium fluoride (KF) by slow evaporation technique at ambient temperature. The size of the grown crystal is up to the dimension of 12 mm × 10 mm × 8 mm. The γ-phase was confirmed by single crystal X-ray diffraction, powder XRD and the FTIR analysis. Optical absorption spectrum reveals that the grown crystal has good optical transparency in the entire visible region with an energy band gap of 5.09 eV, which is an essential requirement for a nonlinear optical crystal. Thermal stability of the grown γ-glycine crystal was determined using the thermo gravimetric and differential thermal analyses. The NLO activity of γ-glycine was confirmed by the Kurtz powder technique using Nd:YAG laser and the grown crystal exhibits high relative conversion efficiency when compared to potassium dihydrogen phosphate (KDP)

    Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes

    No full text
    Zinc oxide (ZnO) nanoparticles (NPs) anchored to carbon nanofiber (CNF) hybrids were synthesized using a facile coprecipitation method. This report demonstrates an effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies. Oxygen deficiency-related defect analyses were performed qualitatively as well as quantitatively using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. All of the analyses clearly indicate an increase in oxygen deficiencies in the hybrids with an increase in the vacuum-annealing temperature. The nonstoichiometric oxygen vacancy is mainly induced via the migration of the lattice oxygen into interstitial sites at elevated temperature (300 °C), followed by diffusion into the gaseous phase with further increase in the annealing temperature (600 °C) in an oxygen-deficient atmosphere. This induction of oxygen vacancy is corroborated by diffuse reflectance spectroscopy, which depicts the oxygen-vacancy-induced bandgap narrowing of the ZnO NPs within the hybrids. At a current density of 3 A g<sup>–1</sup>, the hybrid electrode exhibited higher energy density (119.85 Wh kg<sup>–1</sup>) and power density (19.225 kW kg<sup>–1</sup>) compared to a control ZnO electrode (48.01 Wh kg<sup>–1</sup> and 17.687 kW kg<sup>–1</sup>). The enhanced supercapacitive performance is mainly ascribed to the good interfacial contact between CNF and ZnO, high oxygen deficiency, and fewer defects in the hybrid. Our results are expected to provide new insights into improving the electrochemical properties of various composites/hybrids
    corecore