377 research outputs found

    Estimation of time delay by coherence analysis

    Get PDF
    Using coherence analysis (which is an extensively used method to study the correlations in frequency domain, between two simultaneously measured signals) we estimate the time delay between two signals. This method is suitable for time delay estimation of narrow band coherence signals for which the conventional methods cannot be reliably applied. We show by analysing coupled R\"ossler attractors with a known delay, that the method yields satisfactory results. Then, we apply this method to human pathologic tremor. The delay between simultaneously measured traces of Electroencephalogram (EEG) and Electromyogram (EMG) data of subjects with essential hand tremor is calculated. We find that there is a delay of 11-27 milli-seconds (msms) between the tremor correlated parts (cortex) of the brain (EEG) and the trembling hand (EMG) which is in agreement with the experimentally observed delay value of 15 msms for the cortico-muscular conduction time. By surrogate analysis we calculate error-bars of the estimated delay.Comment: 21 pages, 8 figures, elstart.cls file included. Accepted for publication in Physica

    Antibody-related movement disorders - a comprehensive review of phenotype-autoantibody correlations and a guide to testing

    Get PDF
    Background: Over the past decade increasing scientific progress in the field of autoantibody–mediated neurological diseases was achieved. Movement disorders are a frequent and often prominent feature in such diseases which are potentially treatable. Main body: Antibody-mediated movement disorders encompass a large clinical spectrum of diverse neurologic disorders occurring either in isolation or accompanying more complex autoimmune encephalopathic diseases. Since autoimmune movement disorders can easily be misdiagnosed as neurodegenerative or metabolic conditions, appropriate immunotherapy can be delayed or even missed. Recognition of typical clinical patterns is important to reach the correct diagnosis. Conclusion: There is a growing number of newly discovered antibodies which can cause movement disorders. Several antibodies can cause distinctive phenotypes of movement disorders which are important to be aware of. Early diagnosis is important because immunotherapy can result in major improvement. In this review article we summarize the current knowledge of autoimmune movement disorders from a point of view focused on clinical syndromes. We discuss associated clinical phenomenology and antineuronal antibodies together with alternative etiologies with the aim of providing a diagnostic framework for clinicians considering underlying autoimmunity in patients with movement disorders

    Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor

    Get PDF
    Background: Unilateral or very asymmetric upper limb tremors with a jerky appearance are poorly investigated. Their clinical classification is an unsolved problem because their classification as essential tremor versus dystonic tremor is uncertain. To avoid misclassification as essential tremor or premature classification as dystonic tremor, the term indeterminate tremor was suggested. Objectives: The aim of this study was to characterize this tremor subgroup electrophysiologically and evaluate whether diagnostically meaningful electrophysiological differences exist compared to patients with essential tremor and dystonic tremor. Methods: We enrolled 29 healthy subjects and 64 patients with tremor: 26 with dystonic tremor, 23 with essential tremor, and 15 patients with upper limb tremor resembling essential tremor but was unusually asymmetric and jerky (indeterminate tremor). We investigated the somatosensory temporal discrimination threshold, the short-interval intracortical inhibition, and the cortical plasticity by paired associative stimulation. Results: Somatosensory temporal discrimination threshold was significantly increased in patients with dystonic tremor and indeterminate tremor, but it was normal in the essential tremor patients and healthy controls. Significant differences in short-interval intracortical inhibition and paired associative stimulation were not found among the three patient groups and controls. Conclusion: These results indicate that indeterminate tremor, as defined in this study, shares electrophysiological similarities with dystonic tremor rather than essential tremor. Therefore, we propose that indeterminate tremor should be considered as a separate clinical entity from essential tremor and that it might be dystonic in nature. Somatosensory temporal discrimination appears to be a useful tool in tremor classification

    Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor.

    Get PDF
    Essential tremor (ET) is a neurological disease with both motor and non-motor manifestations; however, little is known about its underlying brain basis. Furthermore, the overall organization of the brain network in ET remains largely unexplored. We investigated the topological properties of brain functional network, derived from resting-state functional MRI data, in 23 ET patients vs. 23 healthy controls. Graph theory analysis was used to assess the functional network organization. At the global level, the functional network of ET patients was characterized by lower small-world values than healthy controls - less clustered functionality of the brain. At the regional level, compared with the healthy controls, ET patients showed significantly higher values of global efficiency, cost and degree, and a shorter average path length in the left inferior frontal gyrus (pars opercularis), right inferior temporal gyrus (posterior division and temporo-occipital part), right inferior lateral occipital cortex, left paracingulate, bilateral precuneus bilaterally, left lingual gyrus, right hippocampus, left amygdala, nucleus accumbens bilaterally, and left middle temporal gyrus. In addition, ET patients showed significant higher local efficiency and clustering coefficient values in the frontal medial cortex bilaterally, subcallosal cortex, posterior cingulate, parahippocampal gyri bilaterally (posterior division), right lingual gyrus, right cerebellar flocculus, right postcentral gyrus, right inferior semilunar lobule of cerebellum and culmen of vermis. In conclusion, the efficiency of the overall brain functional network in ET is disrupted. Further, our results support the concept that ET is a disorder that disrupts widespread brain regions, including those outside of the brain regions responsible for tremor.pre-print1168 K

    ALS2 mutations: Juvenile amyotrophic lateral sclerosis and generalized dystonia.

    Get PDF
    To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia

    c.207C>G mutation in sepiapterin reductase causes autosomal dominant dopa-responsive dystonia

    Get PDF
    Objective: To elucidate the genetic cause of an Egyptian family with dopa-responsive dystonia (DRD), a childhood-onset dystonia, responding therapeutically to levodopa, which is caused by mutations in various genes. Methods: Rare variants in all coding exons of GCH1 were excluded by Sanger sequencing. Exome sequencing was applied for 1 unaffected and 2 affected family members. To investigate the functional consequences of detected genetic variants, urinary sepiapterin concentrations were determined by high-performance liquid chromatography. Results: A heterozygous rare nonsynonymous variant in exon 1 of sepiapterin reductase (SPR, c.207C>G, p.Asp69Glu) was found in all affected family members. Urinary concentrations of sepiapterin were above the standard of normal controls in most SPR mutation carriers, suggesting functional biochemical consequences of the mutation. Variant filtering of all genes involved in the tetrahydrobiopterin pathway, required for levodopa synthesis, revealed an additional common variant in dihydrofolate reductase (DHFR, rs70991108). The presence of both variants was significantly stronger associated with the biochemical abnormality and the clinical disease state as opposed to 1 variant only. Conclusions: The rare SPR mutation can cause autosomal dominant DRD with incomplete penetrance. The common DHFR variant might have synergistic effects on production of tetrahydrobiopterin and levodopa, thereby increasing penetrance
    corecore