13 research outputs found

    Phase II study (KAMELEON) of single-agent T-DM1 in patients with HER2-positive advanced urothelial bladder cancer or pancreatic cancer/cholangiocarcinoma

    Get PDF
    The antibody-drug conjugate trastuzumab emtansine (T-DM1) is approved for human epidermal growth factor receptor 2 (HER2/ERBB2)-positive breast cancer. We aimed to study tumor HER2 expression and its effects on T-DM1 responses in patients with HER2-positive urothelial bladder cancer (UBC) or pancreatic cancer (PC)/cholangiocarcinoma (CC). In the phase II KAMELEON study (NCT02999672), HER2 status was centrally assessed by immunohistochemistry, with positivity defined as non-focal homogeneous or heterogeneous overexpression of HER2 in ≥30% of stained cells. We also performed exploratory biomarker analyses (e.g., gene-protein assay) on tissue samples collected from study participants and consenting patients who failed screening. Of the 284 patients successfully screened for HER2 status (UBC, n = 69; PC/CC, n = 215), 13 with UBC, four with PC, and three with CC fulfilled eligibility criteria. Due to recruitment difficulty, the sponsor terminated KAMELEON prematurely. Of the five responders in the UBC cohort (overall response rate, 38.5%), HER2 expression was heterogeneous in two and homogeneous in three. The one responder in the PC/CC cohort had PC, and the tumor displayed homogeneous expression. In the biomarker-evaluable population, composed of screen-failed and enrolled patients, 24.3% (9/37), 1.5% (1/66), and 8.2% (4/49) of those with UBC, PC, or CC, respectively, had HER2-positive tumors. In a gene-protein assay combining in situ hybridization with immunohistochemistry, greater HER2 homogeneity was associated with increased ERBB2 amplification ratio. In conclusion, KAMELEON showed that some patients with HER2-positive UBC or PC can respond to T-DM1 and provided insight into the prevalence of HER2 positivity and expression patterns in three non-breast tumor types.</p

    Immune Markers and Tumor-Related Processes Predict Neoadjuvant Therapy Response in the WSG-ADAPT HER2-Positive/Hormone Receptor-Positive Trial in Early Breast Cancer

    Get PDF
    Prognostic or predictive biomarkers in HER2-positive early breast cancer (EBC) may inform treatment optimization. The ADAPT HER2-positive/hormone receptor-positive phase II trial (NCT01779206) demonstrated pathological complete response (pCR) rates of ~40% following de-escalated treatment with 12 weeks neoadjuvant ado-trastuzumab emtansine (T-DM1) ± endocrine therapy. In this exploratory analysis, we evaluated potential early predictors of response to neoadjuvant therapy. The effects of PIK3CA mutations and immune (CD8 and PD-L1) and apoptotic markers (BCL2 and MCL1) on pCR rates were assessed, along with intrinsic BC subtypes. Immune response and pCR were lower in PIK3CA-mutated tumors compared with wildtype. Increased BCL2 at baseline in all patients and at Cycle 2 in the T-DM1 arms was associated with lower pCR. In the T-DM1 arms only, the HER2-enriched subtype was associated with increased pCR rate (54% vs. 28%). These findings support further prospective pCR-driven de-escalation studies in patients with HER2-positive EBC

    Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook

    No full text
    International audienceWhen the VEGF-A-targeting monoclonal antibody bevacizumab (Avastin®) entered clinical practice more than 15 years ago, it was one of the first targeted therapies and the first approved angiogenesis inhibitor. Marking the beginning for a new line of anti-cancer treatments, bevacizumab remains the most extensively characterized anti-angiogenetic treatment. Initially approved for treatment of metastatic colorectal cancer in combination with chemotherapy, its indications now include metastatic breast cancer, non-small-cell lung cancer, glioblastoma, renal cell carcinoma, ovarian cancer and cervical cancer. This review provides an overview of the clinical experience and lessons learned since bevacizumab's initial approval, and highlights how this knowledge has led to the investigation of novel combination therapies. In the past 15 years, our understanding of VEGF's role in the tumor microenvironment has evolved. We now know that VEGF not only plays a major role in controlling blood vessel formation, but also modulates tumor-induced immunosuppression. These immunomodulatory properties of bevacizumab have opened up new perspectives for combination therapy approaches, which are being investigated in clinical trials. Specifically, the combination of bevacizumab with cancer immunotherapy has recently been approved in non-small-cell lung cancer and clinical benefit was also demonstrated for treatment of hepatocellular carcinoma. However, despite intense investigation, reliable and validated biomarkers that would enable a more personalized use of bevacizumab remain elusive. Overall, bevacizumab is expected to remain a key agent in cancer therapy, both due to its established efficacy in approved indications and its promise as a partner in novel targeted combination treatments

    Determining PD-L1 Status in Patients with Triple-Negative Breast Cancer: Lessons Learned from IMpassion130

    No full text
    International audienceAbstract Triple-negative breast cancer (TNBC) accounts for approximately 12% to 17% of all breast cancers and has an aggressive clinical behavior. Increased tumor-infiltrating lymphocyte counts are prognostic for survival in TNBC, making this disease a potential target for cancer immunotherapy (CIT). Research on immunophenotyping of tumor-infiltrating lymphocytes is revealing molecular and structural organization in the tumor microenvironment that may predict patient prognosis. The anti–programmed death-ligand 1 (PD-L1) antibody atezolizumab plus nab-paclitaxel was the first CIT combination to demonstrate progression-free survival benefit and clinically meaningful overall survival benefit in the first-line treatment of metastatic TNBC (mTNBC) in patients with PD-L1–expressing tumor-infiltrating immune cells (IC) in ≥ 1% of the tumor area. This led to its US and EU approval for mTNBC and US approval of the VENTANA PD-L1 (SP142) assay as a companion diagnostic immunohistochemistry (IHC) assay. Subsequently, the anti– programmed death-1 (PD-1) antibody pembrolizumab plus chemotherapy was approved by the FDA for mTNBC based on progression-free survival benefit in patients with a combined positive score ≥10 by its concurrently approved 22C3 companion diagnostic assay. Treatment guidelines now recommend PD-L1 testing for patients with mTNBC, and the testing landscape will likely become increasingly complex as new anti–PD-L1/PD-1 agents and diagnostics are approved for TNBC. Integrating PD-L1 testing into current diagnostic workflows for mTNBC may provide more treatment options for these patients. Therefore, it is critical for medical oncologists and pathologists to understand the available assays and their relevance to therapeutic options to develop an appropriate workflow for IHC testing

    Immune Markers and Tumor-Related Processes Predict Neoadjuvant Therapy Response in the WSG-ADAPT HER2-Positive/Hormone Receptor-Positive Trial in Early Breast Cancer

    No full text
    Prognostic or predictive biomarkers in HER2-positive early breast cancer (EBC) may inform treatment optimization. The ADAPT HER2-positive/hormone receptor-positive phase II trial (NCT01779206) demonstrated pathological complete response (pCR) rates of ~40% following de-escalated treatment with 12 weeks neoadjuvant ado-trastuzumab emtansine (T-DM1) ± endocrine therapy. In this exploratory analysis, we evaluated potential early predictors of response to neoadjuvant therapy. The effects of PIK3CA mutations and immune (CD8 and PD-L1) and apoptotic markers (BCL2 and MCL1) on pCR rates were assessed, along with intrinsic BC subtypes. Immune response and pCR were lower in PIK3CA-mutated tumors compared with wildtype. Increased BCL2 at baseline in all patients and at Cycle 2 in the T-DM1 arms was associated with lower pCR. In the T-DM1 arms only, the HER2-enriched subtype was associated with increased pCR rate (54% vs. 28%). These findings support further prospective pCR-driven de-escalation studies in patients with HER2-positive EBC

    Immune Markers and Tumor-Related Processes Predict Neoadjuvant Therapy Response in the WSG-ADAPT HER2-Positive/Hormone Receptor-Positive Trial in Early Breast Cancer

    No full text
    Prognostic or predictive biomarkers in HER2-positive early breast cancer (EBC) may inform treatment optimization. The ADAPT HER2-positive/hormone receptor-positive phase II trial (NCT01779206) demonstrated pathological complete response (pCR) rates of ~40% following de-escalated treatment with 12 weeks neoadjuvant ado-trastuzumab emtansine (T-DM1) ± endocrine therapy. In this exploratory analysis, we evaluated potential early predictors of response to neoadjuvant therapy. The effects of PIK3CA mutations and immune (CD8 and PD-L1) and apoptotic markers (BCL2 and MCL1) on pCR rates were assessed, along with intrinsic BC subtypes. Immune response and pCR were lower in PIK3CA-mutated tumors compared with wildtype. Increased BCL2 at baseline in all patients and at Cycle 2 in the T-DM1 arms was associated with lower pCR. In the T-DM1 arms only, the HER2-enriched subtype was associated with increased pCR rate (54% vs. 28%). These findings support further prospective pCR-driven de-escalation studies in patients with HER2-positive EBC

    Immune Markers and Tumor-Related Processes Predict Neoadjuvant Therapy Response in the WSG-ADAPT HER2-Positive/Hormone Receptor-Positive Trial in Early Breast Cancer

    No full text
    Simple Summary: Patients with HER2-positive early breast cancer are treated with antibodies to the HER2 protein along with chemotherapy, regardless of whether their cancer also has hormone receptors, or of its molecular features. Because patients with HER2-positive/hormone receptor-positive disease tend to live longer than those with HER2-positive/hormone receptor-negative disease, there may be some patients who are being overtreated under current guidelines. The aim of our exploratory translational analysis of the ADAPT HER2-positive/hormone receptor-positive trial was to investigate the potential of several prognostic (outcome regardless of therapy) and predictive (effect of therapy) biomarkers as early predictors of response to treatment before surgery. Comparison of these biomarkers before and after one treatment cycle, and their effects on whether patients' cancers were completely removed at surgery, suggest that certain patients (those with treatment-induced CD8 protein-expressing cells infiltrating the cancer; without PIK3CA mutation; those with HER2-enriched tumors) may be candidates for less intensive treatment following pre-surgical therapy. Prognostic or predictive biomarkers in HER2-positive early breast cancer (EBC) may inform treatment optimization. The ADAPT HER2-positive/hormone receptor-positive phase II trial (NCT01779206) demonstrated pathological complete response (pCR) rates of similar to 40% following de-escalated treatment with 12 weeks neoadjuvant ado-trastuzumab emtansine (T-DM1) +/- endocrine therapy. In this exploratory analysis, we evaluated potential early predictors of response to neoadjuvant therapy. The effects of PIK3CA mutations and immune (CD8 and PD-L1) and apoptotic markers (BCL2 and MCL1) on pCR rates were assessed, along with intrinsic BC subtypes. Immune response and pCR were lower in PIK3CA-mutated tumors compared with wildtype. Increased BCL2 at baseline in all patients and at Cycle 2 in the T-DM1 arms was associated with lower pCR. In the T-DM1 arms only, the HER2-enriched subtype was associated with increased pCR rate (54% vs. 28%). These findings support further prospective pCR-driven de-escalation studies in patients with HER2-positive EBC
    corecore