601 research outputs found

    EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties

    Get PDF
    The bilayered mammary epithelium comprises a luminal layer of secretory cells and a basal layer of myoepithelial cells. Numerous data suggest the existence of self-renewing, pluripotent mammary stem cells; however, their molecular characteristics and differentiation pathways are largely unknown. BC44 mammary epithelial cells in culture, display phenotypic characteristics of basal epithelium, i.e., express basal cytokeratins 5 and 14 and P-cadherin, but no smooth muscle markers. In vivo, after injection into the cleared mammary fat pad, these cells gave rise to bilayered, hollow, alveolus-like structures comprising basal cells expressing cytokeratin 5 and luminal cells positive for cytokeratin 8 and secreting β-casein in a polarized manner into the lumen. The persistent stimulation of EGF receptor signaling pathway in BC44 cells in culture resulted in the loss of the in vivo morphogenetic potential and led to the induction of active MMP2, thereby triggering cell scattering and motility on laminin 5. These data (a) suggest that BC44 cells are capable of asymmetric division for self-renewal and the generation of a differentiated progeny restricted to the luminal lineage; (b) clarify the function of EGF in the control of the BC44 cell phenotypic plasticity; and (c) suggest a role for this phenomenon in the mammary gland development

    Pretransplant renal function according to CKD-EPI cystatin C equation is a prognostic factor of death after liver transplantation

    No full text
    International audienceBackground & aims - In patients with cirrhosis, cystatin C (CystC) based equations may be more accurate indicators of glomerular filtration rate (GFR) than creatinine (Pcr) based equations. Renal function before liver transplantation (LT) is thought to impact survival after LT. We aimed at assessing pretransplant creatinine and CystC based equations with respect to their predictive value on long-term survival after LT. Methods - From 2001 to 2011, CystC was determined at pre-LT evaluation in 682 patients together with GFR assessed using MDRD-4, MDRD-6, CKD-EPI-cystatin C, CKD-EPI-creatinine and CKD-EPI-creatinine-cystatin C equations. Patients were classified according to the Kidney Disease Outcomes Quality Initiative classification (KDOQI). Results - Median age at LT was 55 [49-60] years with a median MELD score of 13.5 [8.3-19.2] and a median post-transplant follow-up of 60 [26-89] months. Using CKD-EPI Cystatin C and the KDOQI classification, 21.1% of patients were stage 1, 43.1% stage 2, 29.1% stage 3 and 6.5% stage 4. Kaplan-Meier survival estimates were significantly different between KDOQI stages when determined using the CKD-EPI-CystatinC equation. This was not the case when using the other equations. At multivariate analysis, GFR and KDOQI estimated using the CKD-EPI-CystatinC equation were significantly associated with death (HR: 0.992; CI95%: 0.986-0.999 and 1.24; CI95%: 1.02-1.50 respectively). When assessed using the MDRD-4, MDRD-6, CKD-EPI-Creatinine-CystatinC and CKD-EPI-Creatinine equations GFR was not significantly associated with death. Conclusions - Estimated pre-LT renal function is predictive of post-LT survival only when assessed using the CKD-EPI cystatin C equation. This supports the use of Cystatine C and of its related equation for the assessment of renal function before liver transplantation

    Enrichment and characterization of thymus-repopulating cells in stroma-dependent cultures of rat bone marrow

    Get PDF
    The bone marrow precursor cells seeding the thymus have been difficult to investigate using fresh bone marrow and in vivo thymus reconstitution assays. We have therefore designed a short-term bone marrow culture system allowing the study of thymus-repopulating cells in the marrow microenvironment. Low-density rat bone marrow cells were grown on pre-established mouse bone marrow stromal cell layers. Cocultured cells were maintained either under steroid-free conditions (Whitlock/Witte-type culture) or in the presence of 10(-7) M hydrocortisone (Dexter-type culture). After 3 days in vitro, the unanchored cell fractions were tested for their ability to colonize and repopulate fetal mouse thymic lobes in vitro. Both fresh low-density cells and Whitlock/Witte-type cultures, but not Dexter-type cultures, gave rise intrathymically to significant numbers of rat donor-type Thy-1.1high CD2+ CD5low CD43+ cells accounting for 50% to 90% of the organ-cultured cells at day 14. Repopulation of fetal mouse thymic lobes by rat Thy-1.1high cells could be used as a readout assay for initiation of thymopoiesis from bone marrow precursor cells, since 90% of the cells were CD3-/low and TCRalphabeta-/low and 15% of the cells co-expressed CD4 and CD8. Dose-response analysis showed that thymus repopulating cells were at least maintained, if not amplified during the 3-day culture period, leading to at least a 10-fold enrichment as compared to unfractionated bone marrow. Unlike fresh low-density cells before culture, short-term Whitlock/Witte-type cultures were depleted in myeloid-restricted precursor cells. In culture, the thymus-repopulating activity was predominantly associated with a 10% lymphoid cell subset which did not express the B-lineage-associated antigens revealed by HIS24 (the rat B220 equivalent) and HIS50 mAbs. We propose that unanchored thymus-repopulating cells enriched in Whitlock/Witte-type cultures may represent lymphoid-restricted, T-cell precursors of the bone marrow capable of emigrating and colonizing the thymus

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology

    Iron and steatohepatitis.

    Get PDF
    As the main iron storage site in the body and the main source of the iron-regulatory hormone, hepcidin, the liver plays a pivotal role in iron homeostasis. A variable degree of hepatic iron accumulation has long been recognized in a number of chronic liver diseases. Both alcoholic and non-alcoholic steatohepatitis display increased iron deposits in the liver, with an hepatocellular, mesenchymal, or mixed pattern, and recent reports have documented a concomitant aberrant hepcidin expression that could be linked to different coincidental pathogenic events (e.g. the etiological agent itself, necroinflammation, metabolic derangements, genetic predisposition). The present study reviews the pathogenic mechanisms of iron accumulation in steatohepatitis during alcoholic and non-alcoholic liver disease and the role of excess iron in chronic disease progression

    Paracrine met signaling triggers epithelial mesenchymal transition in mammary luminal progenitors, affecting their fate

    Get PDF
    HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin downregulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis

    Expression of hepcidin mRNA is uniformly suppressed in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study evaluated the expression of hepcidin mRNA in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>Samples of cancerous and non-cancerous liver tissue were taken from 40 patients with HCC who underwent hepatectomy. Expression of hepcidin mRNA was evaluated by real-time PCR, and compared in tumors differing in their degree of differentiation, number of tumors, and vessel invasion. Correlations between hepcidin expression and the interval until HCC recurrence, and the serum concentration of hepcidin were evaluated, together with the expression of mRNAs for other iron metabolism molecules, ferroportin and transferrin receptor 2 (Trf2).</p> <p>Results</p> <p>Hepcidin mRNA expression in non-cancerous and cancerous tissues was 1891.8 (32.3–23187.4) and 53.4 (1.9–3185.8), respectively (<it>P </it>< 0.0001). There were no significant differences in hepcidin expression among tumors differing in their degree of differentiation, number of tumors, or vessel invasion. There was no significant correlation between hepcidin expression and the interval until HCC recurrence. The serum concentration of hepcidin-25 was not correlated with hepcidin-mRNA expression. Finally, there were no significant differences in the expression of mRNA for ferroportin and Trf2 between cancerous and non-cancerous tissues.</p> <p>Conclusion</p> <p>Expression of hepcidin mRNA is strikingly suppressed in cancerous, but not in non-cancerous tissues, in patients with HCC, irrespective of ferroportin or Trf2 expression. Uniform suppression of hepcidin may be linked to the development of HCC.</p

    A new 500 kb haplotype associated with high CD8+ T-lymphocyte numbers predicts a less severe expression of hereditary hemochromatosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemochromatosis(HH) is a common genetic disorder of iron overload where the large majority of patients are homozygous for one ancestral mutation in the <it>HFE </it>gene. In spite of this remarkable genetic homogeneity, the condition is clinically heterogeneous, varying from a severe disease to an asymptomatic phenotype with only abnormal biochemical parameters. The recent recognition of the variable penetrance of the HH mutation in different large population studies demands the need to search for new modifiers of its phenotypic expression. The present study follows previous observations that MHC class-I linked genetic markers, associated with the setting of CD8+ T-lymphocyte numbers, could be clinically relevant modifiers of the phenotypic expression in HH, and aimed to find new markers that could be used as more reliable prognostic variables.</p> <p>Methods</p> <p>Haplotype analysis, including seven genetic markers within a 1 Mb region around the microsatellite D6S105 was performed in a group of 56 previously characterized C282Y homozygous Portuguese patients. Parameters analyzed in this study were total body iron stores, clinical manifestations related with HH and immunological parameters (total lymphocyte numbers, CD4+ and CD8+ T-lymphocyte numbers). An independent group of 10 C282Y homozygous patients from Vancouver, Canada, were also included in this study and analyzed for the same parameters.</p> <p>Results</p> <p>A highly conserved ancestral haplotype defined by the SNP markers PGBD1-A, ZNF193-A, ZNF165-T (designated as A-A-T) was found associated with both abnormally low CD8+ T-lymphocyte numbers and the development of a severe clinical expression of HH. In a small proportion of patients, another conserved haplotype defined by the SNP markers PGBD1-G, ZNF193-G, ZNF165-G (designated as G-G-G) was found associated with high CD8+ T-lymphocyte numbers and a milder clinical expression. Remarkably, the two conserved haplotypes defined in Portuguese patients were also observed in the geographically different population of Canadian patients, also predicting CD8+ T-lymphocyte numbers and the severity of disease.</p> <p>Conclusion</p> <p>These results may have important implications not only for approaching the question of the penetrance of the hemochromatosis gene in different world populations but also to further narrow the region of interest to find a candidate gene involved in the setting of CD8+ T-lymphocyte numbers in humans.</p

    Derivation of Myoepithelial Progenitor Cells from Bipotent Mammary Stem/Progenitor Cells

    Get PDF
    There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Recent molecular profiling has identified six major subtypes of breast cancer: basal-like, ErbB2-overexpressing, normal breast epithelial-like, luminal A and B, and claudin-low subtypes. To help understand the relationship among mammary stem/progenitor cells and breast cancer subtypes, we have recently derived distinct hTERT-immortalized human mammary stem/progenitor cell lines: a K5+/K19− type, and a K5+/K19+ type. Under specific culture conditions, bipotent K5+/K19− stem/progenitor cells differentiated into stable clonal populations that were K5−/K19− and exhibit self-renewal and unipotent myoepithelial differentiation potential in contrast to the parental K5+/K19− cells which are bipotent. These K5−/K19− cells function as myoepithelial progenitor cells and constitutively express markers of an epithelial to mesenchymal transition (EMT) and show high invasive and migratory abilities. In addition, these cells express a microarray signature of claudin-low breast cancers. The EMT characteristics of an un-transformed unipotent mammary myoepithelial progenitor cells together with claudin-low signature suggests that the claudin-low breast cancer subtype may arise from myoepithelial lineage committed progenitors. Availability of immortal MPCs should allow a more definitive analysis of their potential to give rise to claudin-low breast cancer subtype and facilitate biological and molecular/biochemical studies of this disease
    • …
    corecore