59 research outputs found

    A retrospective study of cochlear implant outcomes in children with residual hearing

    Get PDF
    BACKGROUND: There has been increasing demand for the cochlear implantation of children who demonstrate some auditory capacity with conventional hearing aids. The purpose of this study was to examine speech recognition outcomes in a group of children who were regarded as borderline candidates for cochlear implantation as their residual hearing and/or auditory functioning levels exceeded typical audiologic candidacy criteria. METHODS: A retrospective chart review was undertaken at one Canadian cochlear implant centre to identify children implanted at age 4 or older with a pure-tone-average of 90 dB or better and speech recognition of 30% or greater. Pre-implant and post-implant open-set word and sentence test scores were analyzed. RESULTS: Eleven children of 195 paediatric cochlear implant recipients met the inclusion criteria for this study. Speech recognition results for the10 English-speaking children indicated significant gains in both open-set word and sentence understanding within the first 6 to 12 months of implant use. Seven of 9 children achieved 80% open-set sentence recognition within 12 months post-surgery. CONCLUSION: Children with several years of experience using conventional amplification demonstrated rapid progress in auditory skills following cochlear implantation. These findings suggest that cochlear implantation may be an appropriate intervention for selected children with severe hearing losses and/or auditory capacity outside current candidacy criteria

    Array CGH Phylogeny: How accurate are Comparative Genomic Hybridization-based trees?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been well established. In most CGH work, all species and strains are compared to a single reference species, whose genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny using simulated competitive hybridization data. This work showed that a limited number of conditions, principally the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool with experimental CGH data from competitive hybridizations between <it>N. crassa </it>and other <it>Neurospora </it>species. In the discussion, we add to our empirical study of <it>Neurospora </it>by reanalyzing of data from a previous CGH phylogenetic analysis of the yeast <it>sensu stricto </it>complex.</p> <p>Results</p> <p>Array ratio data for <it>Neurospora </it>and related species were normalized with loess, robust spline, and linear ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were compared to published phylogenetic analyses for <it>Neurospora </it>based on multilocus sequence analysis (MLSA). For the <it>Neurospora </it>dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered only by pruning taxa - including the reference taxon - from the analysis.</p> <p>Conclusion</p> <p>Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we make suggestions on the normalization and post-normalization methods that work best in estimating genetic distance between taxa.</p

    Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America

    Get PDF
    Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichum gloeosporioides s.l. is a species complex of plant pathogens and endophytic fungi for which reliable species recognition has only recently become possible through a multi-locus phylogenetic approach. By adopting an intensive regional sampling strategy encompassing multiple hosts within and beyond agricultural zones associated with cranberry (Vaccinium macrocarpon Aiton), we have integrated North America strains of Colletotrichum gloeosporioides s.l. from these habitats into a broader phylogenetic framework. We delimit species on the basis of genealogical concordance phylogenetic species recognition (GCPSR) and quantitatively assess the monophyly of delimited species at each of four nuclear loci and in the combined data set with the genealogical sorting index (gsi). Our analysis resolved two principal lineages within the species complex. Strains isolated from cranberry and sympatric host plants are distributed across both of these lineages and belong to seven distinct species or terminal clades. Strains isolated from V. macrocarpon in commercial cranberry beds belong to four species, three of which are described here as new. Another species, C. rhexiae Ellis & Everh., is epitypified. Intensive regional sampling has revealed a combination of factors, including the host species from which a strain has been isolated, the host organ of origin, and the habitat of the host species, as useful indicators of species identity in the sampled regions. We have identified three broadly distributed temperate species, C. fructivorum, C. rhexiae, and C. nupharicola, that could be useful for understanding the microevolutionary forces that may lead to species divergence in this important complex of endophytes and plant pathogens

    Experimental evolution of adaptive divergence under varying degrees of gene flow

    Get PDF
    Adaptive divergence is the key evolutionary process generating biodiversity by means of natural selection. Yet, the conditions under which it can arise in the presence of gene flow remain contentious. To address this question, we subjected 132 sexually reproducing fission yeast populations, sourced from two independent genetic backgrounds, to disruptive ecological selection and manipulated the level of migration between environments. Contrary to theoretical expectations, adaptive divergence was most pronounced when migration was either absent (allopatry) or maximal (sympatry), but was much reduced at intermediate rates (parapatry and local mating). This effect was apparent across central life-history components (survival, asexual growth and mating) but differed in magnitude between ancestral genetic backgrounds. The evolution of some fitness components was constrained by pervasive negative correlations (trade-off between asexual growth and mating), while others changed direction under the influence of migration (for example, survival and mating). In allopatry, adaptive divergence was mainly conferred by standing genetic variation and resulted in ecological specialization. In sympatry, divergence was mainly mediated by novel mutations enriched in a subset of genes and was characterized by the repeated emergence of two strategies: an ecological generalist and an asexual growth specialist. Multiple loci showed consistent evidence for antagonistic pleiotropy across migration treatments providing a conceptual link between adaptation and divergence. This evolve-and-resequence experiment shows that rapid ecological differentiation can arise even under high rates of gene flow. It further highlights that adaptive trajectories are governed by complex interactions of gene flow, ancestral variation and genetic correlations

    The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis

    Get PDF
    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05) and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05). The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05) in expression of genes associated with tumorigenesis (MAPK8, CDC6), epithelial-mesenchymal transition (NOTCH1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation

    Speech perception in children using cochlear implants: prediction of long-term outcomes.

    No full text
    Publisher’s permission requested and denied.A group of 102 children using the Nucleus multichannel cochlear implant were assessed for open-set speech perception abilities at six-monthly intervals following implant surgery. The group included a wide range of ages, types of hearing loss, ages at onset of hearing loss, experience with implant use and communication modes. Multivariate analysis indicated that a shorter duration of profound hearing loss, later onset of profound hearing loss, exclusively oral/aural communication and greater experience with the implant were associated with better open-set speech perception. Developmental delay was associated with poorer speech perception and the SPEAK signal coding scheme was shown to provide better speech perception performance than previous signal processors. Results indicated that postoperative speech perception outcomes could be predicted with an accuracy that is clinically useful

    Communication development in children who receive the cochlear implant younger than 12 months: risks versus benefits.

    No full text
    BACKGROUND: The advent of universal neonatal hearing screening in some countries and the availability of screening programs for at-risk infants in other countries has facilitated earlier referral, diagnosis, and intervention for infants with hearing loss. Improvements in device technology, two decades of pediatric clinical experience, a growing recognition of the efficacy of cochlear implants for young children, and the recent change in the U.S. Food and Drug Administration's age criteria to include children as young as 12 mo has led to increasing numbers of young children receiving cochlear implants. Evidence to support provision for infants younger than 12 mo is extrapolated from physiological studies, studies of children using hearing aids, and studies of children older than 12 mo of age with implants. To date, however, there are few published research findings regarding communication development in children between 6 and 12 mo of age who receive implants. The current study hypothesized that earlier implantation would lead to increased rates of language acquisition as the children were still in the critical period for their development. METHOD: A retrospective review was completed for 19 infants (mean age at implantation, 0.88 yr; range, 0.61-1.07, SD 0.15) and 87 toddlers (mean age at implantation, 1.60 yr; range, 1.13-2.00, SD 0.24) who received the multichannel implant in Melbourne, Australia. Preimplantation audiological assessments for these children included aided and unaided audiograms, auditory brain stem response, auditory steady state response (ASSR), and otoacoustic emission and indicated profound to total bilateral hearing loss in all cases. Communication assessment included completion of the Rossetti Infant-Toddler Language Scale and educational psychologists' cognitive and motor assessment. Computed tomography scan, magnetic resonance imaging, and surgical records for all cases were reviewed. Postimplantation language assessments were reported in terms of the rate of growth over time on the language comprehension and language expression subscales of the Rossetti Infant-Toddler Language Scale. RESULTS: Results demonstrated that cochlear implantation may be performed safely in very young children with excellent language outcomes. The mean rates of receptive (1.12) and expressive (1.01) language growth for children receiving implants before the age of 12 mo were significantly greater than the rates achieved by children receiving implants between 12 and 24 mo, and matched growth rates achieved by normally hearing peers. These preliminary results support the provision of cochlear implants for children younger than 12 mo of age within experienced pediatric implantation centers

    Speech perception outcomes in older children who use multichannel cochlear implants: Older is not always poorer

    Get PDF
    This is a publisher’s version of an article published in Annals of Otology, Rhinology & Laryngology published by Annals Publishing Company. This version is reproduced with permission from Annals Publishing Company. http://www.annals.com/Speech perception outcomes for early-deafened children who undergo implantation as teenagers or young adults are generally reported to be poorer than results for young children. It is important to provide appropriate expectations when counseling adolescents and their families to help them make an informed choice regarding cochlear implant surgery. The considerable variation of results in this group makes this process more difficult. This study considered a number of factors in a group of 25 children who underwent implantation in Melbourne between the ages of 8 and 18 years. Each subject completed open-set speech perception testing with Bamford-Kowal-Bench sentences before and after implantation and preoperative language testing with the Peabody Picture Vocabulary Test. Data were collected regarding the type of hearing loss, age at implantation, age at hearing aid fitting, audiometric details, and preoperative and postoperative communication mode. Results were submitted to a stepwise multiple linear regression analysis with postoperative open-set sentence scores as the dependent variables. The analysis suggested that 3 factors have a significant predictive value for speech perception after implantation: preoperative open-set sentence score, duration of profound hearing loss, and equivalent language age. These 3 factors accounted for 66% of the variance in this group. The results of this study suggest that children who have useful speech perception before implantation, and higher age-equivalent scores on language measures, would be expected to do well with a cochlear implant. Consistent with other studies, a shorter duration of profound hearing loss is also advantageous. The mean sentence score for this group, 47%, was not significantly different from the mean result across all children in the Melbourne program
    corecore