100 research outputs found

    Penicillium menonorum, a new species related to P. pimiteouiense

    Get PDF
    Penicillium menonorum is described as a new monoverticillate, non-vesiculate species that resembles P. restrictum and P. pimiteouiense. On the basis of phylogenetic analysis of DNA sequences from four loci, P. menonorum occurs in a clade with P. pimiteouiense, P. vinaceum, P. guttulosum, P. rubidurum, and P. parvum. Genealogical concordance analysis was applied to P. pimiteouiense and P. parvum, substantiating the phenotypically defined species. The species P. rubidurum, P. guttulosum, and P. menonorum were on distinct branches statistically excluded from inclusion in other species and have distinct phenotypes

    Array CGH Phylogeny: How accurate are Comparative Genomic Hybridization-based trees?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been well established. In most CGH work, all species and strains are compared to a single reference species, whose genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny using simulated competitive hybridization data. This work showed that a limited number of conditions, principally the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool with experimental CGH data from competitive hybridizations between <it>N. crassa </it>and other <it>Neurospora </it>species. In the discussion, we add to our empirical study of <it>Neurospora </it>by reanalyzing of data from a previous CGH phylogenetic analysis of the yeast <it>sensu stricto </it>complex.</p> <p>Results</p> <p>Array ratio data for <it>Neurospora </it>and related species were normalized with loess, robust spline, and linear ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were compared to published phylogenetic analyses for <it>Neurospora </it>based on multilocus sequence analysis (MLSA). For the <it>Neurospora </it>dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered only by pruning taxa - including the reference taxon - from the analysis.</p> <p>Conclusion</p> <p>Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we make suggestions on the normalization and post-normalization methods that work best in estimating genetic distance between taxa.</p

    Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basin

    Full text link
    The Devonian Antrim Shale is an organic-rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well-developed network of major, through-going vertical fractures controls reservoir-scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ 13 C values (+34 to −41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ 13 C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ 13 C values (<−32‰) are solely associated with outcrop samples and record methane oxidation during cement precipitation. Fracture-fill calcite with δ 13 C values between −10 and −30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13 C-rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture-fill cements. The δ 18 O values in both formation waters and calcite cements increase with depth in the basin (−12 to −4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture-fill cements from outcrop samples have δ 13 C values between −41 and −15‰ PDB. In contrast, most cement in cores have δ 13 C values between +15 and +34‰ PDB. Radiocarbon and 230 Th dating of fracture-fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75720/1/j.1468-8123.2002.00036.x.pd

    Genetic Diversity, Recombination, and Divergence in Animal Associated Penicillium dipodomyis

    Get PDF
    Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa

    The Mating-Type Chromosome in the Filamentous Ascomycete Neurospora tetrasperma Represents a Model for Early Evolution of Sex Chromosomes

    Get PDF
    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first “evolutionary stratum”, genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today

    Uplift-driven climate change at 12 Ma: a long delta O-18 record from the NE margin of the Tibetan plateau

    No full text
    Carbonates from fluvial and lacustrine sediments were sampled from multiple measured sections in the Linxia basin of western China. Based on textural and mineralogical evidence, lacustrine carbonates are primary precipitates from lake water. A 29 million year record of the oxygen isotope composition of meteoric water is inferred from the delta(18)O values of these carbonates. This inference is based on the most negative delta(18)O values in the lake carbonates, which represent lake waters that have experienced the least evaporative enrichment. Carbonate delta(18)O values, a proxy for rainfall delta(18)O, are similar to -10.5 parts per thousand throughout the interval of 29-12 Ma. At 12 Ma there is a shift to -9 parts per thousand, a value that remains into the Pliocene. This implies a major reorganization of atmospheric circulation patterns and a shift to more and conditions at the NE margin of the Tibetan plateau with the post-12 Ma system similar to that of today. The 12 Ma event may represent the time at which the Tibetan plateau achieves sufficient elevation to block the penetration of moisture from the Indian Ocean or south Pacific into western China. The period of greatest aridity is from 9.6 to 8.2 Ma, a time interval which agrees well with other climate records. (C) 2003 Elsevier B.V. All rights reserved

    Daily to decadal patterns of precipitation, humidity, and photosynthetic physiology recorded in the spines of the columnar cactus, Carnegiea gigantea

    No full text
    Brooks-English, NT ORCiD: 0000-0002-6936-8079Isotopic analyses of cactus spines grown serially from the apex of long‐lived columnar cactuses may be useful for climatological and ecological studies if time series can be reliably determined from spines. To characterize the timescales over which spines may record this information, we measured spine growth in saguaro cactus over days, months, and years with time‐lapse photography, periodic marking, and postbomb radiocarbon dating and then analyzed isotopic variability over these same timescales and compared these measurements to local climate. We used daily increments of growth, visible as transverse bands of light and dark tissue in spines, as chronometers to develop diurnally resolved d13C and d18O records from three spines grown in series over a 70 day period. We also constructed a 22 year record of d13C variations from spine tips arranged in chronological sequence along the side of a 4 m tall, single‐stemmed saguaro. We evaluated two mechanisms potentially responsible for daily, weekly, and annual variability in d13C values of spines; both related to vapor pressure deficit (VPD). Our data suggest that stomatal conductance is unlikely to be the determinant of d13C variation in spines. We suggest that either VPD‐induced changes in the balance of nighttime‐ and daytime‐ assimilated CO2 or mesophyll‐limited diffusion of CO2 at night are the most likely determinant of d13C variation in spines. Intra‐annual and interannual variability of d18O in spine tissue appears to be controlled by the mass balance of 18O‐depleted water taken up after rain events and evaporative enrichment of 18O in tissue water between rains. We were able to estimate the annual growth and areole generation rate of a saguaro cactus from its 22 yearlong isotopic record because VPD, rainfall, and evaporation exhibit strong annual cycles in the Sonoran Desert and these variations are recorded in the oxygen and carbon isotope ratios of spines.Associated Grant:funded in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR
    corecore