181 research outputs found
The electrophysiology of the betacell based on single transmembrane protein characteristics
The electrophysiology of betacells is at the origin of insulin secretion.
Betacells exhibit a complex behaviour upon stimulation with glucose including
repeated and uninterrupted bursting. Mathematical modelling is most suitable to
improve knowledge about the function of various transmembrane currents provided
the model is based on reliable data. This is the first attempt to build a
mathematical model for the betacell-electrophysiology in a bottom-up approach
which relies on single protein conductivity data. The results of previous
whole-cell-based models are reconsidered. The full simulation including all
prominent transmembrane proteins in betacells is used to provide a functional
interpretation of their role in betacell-bursting and an updated vantage point
of betacell-electrophysiology. As a result of a number of in silico knock-out-
and block-experiments the novel model makes some unexpected predictions:
Single-channel conductivity data imply that calcium-gated potassium currents
are rather small. Thus, their role in burst interruption has to be revisited.
An alternative role in high calcium level oscillations is proposed and an
alternative burst interruption model is presented. It also turns out that
sodium currents are more relevant than expected so far. Experiments are
proposed to verify these predictions.Comment: 28 pages, 5 figures, 54 references, 14 pages supplementary materia
Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells
Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.Peer reviewe
Activation of Ca2+-Dependent K+ Channels Contributes to Rhythmic Firing of Action Potentials in Mouse Pancreatic β Cells
We have applied the perforated patch whole-cell technique to β cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K+ conductance. The current was dependent on Ca2+ influx but unaffected by apamin and charybdotoxin, two blockers of Ca2+-activated K+ channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K+ channels) but partially (>60%) blocked by high (10–20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca2+-activated K+ current plays an important role in the generation of oscillatory electrical activity in the β cell
Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells
The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusion
Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis
The skeletal elements of embryonic limb are prefigured by prechondrogenic condensation in which secreted molecules such as adhesion molecules and extracellular matrix have crucial roles. However, how the secreted molecules are controlled to organize the condensation remains unclear. In this study, we examined metabolic regulation of secretion in prechondrogenic condensation, using bioluminescent monitoring systems. We here report on ATP oscillations in the early step of chondrogenesis. The ATP oscillations depended on both glycolysis and mitochondrial respiration, and their synchronization among cells were achieved via gap junctions. In addition, the ATP oscillations were driven by Ca2+ oscillations and led to oscillatory secretion in chondrogenesis. Blockade of the ATP oscillations prevented cellular condensation. Furthermore, the degree of cellular condensation increased with the frequency of ATP oscillations. We conclude that ATP oscillations have a critical role in prechondrogenic condensation by inducing oscillatory secretion
- …