93 research outputs found

    Assessing Students Learning Readiness in Accelerated Learning Program in Mekelle City IDPs

    Get PDF
    This explanatory sequential mixed-method study is carried out to assess the status of students’ learning readiness and to explore how the triggering factors influence the students’ readiness in the Accelerated Learning Program (ALP) Schools in Mekelle IDPs sites. The Research is conducted in two primary schools, Adihaqi and Meserete. These primary schools are purposely selected to achieve the aim of the assessment focusing on ALP schools students’ learning readiness status within unsuitable learning vicinity. A mixed methods research design is used. Target respondents include all ALP schools going children; out of a total of 100 respondents all (100%) fill questionnaire data for the study and 5 participants participate in interview. In addition, Tigray Education Bureau supervision and Imagine one day ALP coordinator’s report document analysis is used to triangulate the result. The results of the study shows that the description of the students’ readiness to learning showed, low 53.5%, medium 41.5% and high set 5% respectively. The description of the document and interview analysis also indicates low learning readiness. The result of the finding indicates that students’ learning readiness is low and the triggering factors that influence learning readiness are shortage of the scholastic, Covid-19 personal protective materials for individual ALP student, [much more massive curriculum what does it mean?], easily damaged temporary learning spaces, lack of providing nutrient food and lack of support from all concerned body Therefore, special measures should be taken by IDPs, government and other stakeholder to solve the triggering factors that influence students’ learning readiness such as ensuring all learning services have adequate, Covid19 sanitation facilities and attractive environment for learning. Keywords: ALP, IDPs, Students’ Readiness DOI: 10.7176/RHSS/13-7-04 Publication date: April 30th 202

    Evaluating diagnostic accuracies of Panbio™ test and RT-PCR for the detection of SARS-CoV-2 in Addis Ababa, Ethiopia using Bayesian Latent-Class Models (BLCM)

    Full text link
    Background: Rapid diagnostics are vital for curving the transmission and control of the COVID-19 pandemic. Although many commercially available antigen-based rapid diagnostic tests (Ag-RDTs) for the detection of SARS-CoV-2 are recommended by the WHO, their diagnostic performance has not yet been assessed in Ethiopia. So far, the vast majority of studies assessing diagnostic accuracies of rapid antigen tests considered RT-PCR as a reference standard, which inevitably leads to bias when RT-PCR is not 100% sensitive and specific. Thus, this study aimed to evaluate the diagnostic performance of Panbio™ jointly with the RT-PCR for the detection of SARS-CoV-2. Methods: A prospective cross-sectional study was done from July to September 2021 in Addis Ababa, Ethiopia, during the third wave of the pandemic involving two health centers and two hospitals. Diagnostic sensitivity and specificity of Panbio™ and RT-PCR were obtained using Bayesian Latent-Class Models (BLCM). Results: 438 COVID-19 presumptive clients were enrolled, 239 (54.6%) were females, of whom 196 (44.7%) had a positive RT-PCR and 158 (36.1%) were Panbio™ positive. The Panbio™ and RT-PCR had a sensitivity (95% CrI) of 99.6 (98.4-100) %, 89.3 (83.2-97.6) % and specificity (95% CrI) of 93.4 (82.3-100) %, and 99.1 (97.5-100) %, respectively. Most of the study participants, 318 (72.6%) exhibited COVID-19 symptoms; the most reported was cough 191 (43.6%). Conclusion: As expected the RT-PCR performed very well with a near-perfect specificity and a high, but not perfect sensitivity. The diagnostic performance of Panbio™ is coherent with the WHO established criteria of having a sensitivity ≥80% for Ag-RDTs. Both tests displayed high diagnostic accuracies in patients with and without symptoms. Hence, we recommend the use of the Panbio™ for both symptomatic and asymptomatic individuals in clinical settings for screening purposes

    Diagnostic accuracy of three commercially available one step RT-PCR assays for the detection of SARS-CoV-2 in resource limited settings

    Full text link
    Background COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting. Methods A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard. Results Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973–1.000), 0.961(0.930–0.991) and 0.916(0.875–0.952) and considerably lower sensitivities with 0.813(0.658–0.938), 0.836(0.712–0.940) and 0.810(0.687–0.920) for TIB MOLBIOL, Da An and BGI respectively were found. Conclusions While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix

    Epidemiology and individual, household and geographical risk factors of podoconiosis in ethiopia: results from the first nationwide mapping

    Get PDF
    Although podoconiosis is one of the major causes of tropical lymphoedema and is endemic in Ethiopia its epidemiology and risk factors are poorly understood. Individual-level data for 129,959 individuals from 1,315 communities in 659 woreda (districts) were collected for a nationwide integrated survey of lymphatic filariasis and podoconiosis. Blood samples were tested for circulating Wuchereria bancrofti antigen using immunochromatographic card tests. A clinical algorithm was used to reach a diagnosis of podoconiosis by excluding other potential causes of lymphoedema of the lower limb. Bayesian multilevel models were used to identify individual and environmental risk factors. Overall, 8,110 of 129,959 (6.2%, 95% confidence interval [CI] 6.1-6.4%) surveyed individuals were identified with lymphoedema of the lower limb, of whom 5,253 (4.0%, 95% CI 3.9-4.1%) were confirmed to be podoconiosis cases. In multivariable analysis, being female, older, unmarried, washing the feet less frequently than daily, and being semiskilled or unemployed were significantly associated with increased risk of podoconiosis. Attending formal education and living in a house with a covered floor were associated with decreased risk of podoconiosis. Podoconiosis exhibits marked geographical variation across Ethiopia, with variation in risk associated with variation in rainfall, enhanced vegetation index, and altitude

    Mapping and modelling the geographical distribution and environmental limits of podoconiosis in Ethiopia

    Get PDF
    BACKGROUND Ethiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues. METHODOLOGY Our analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008-2010. The integrated mapping used woreda (district) health offices' reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence. PRINCIPAL FINDINGS Data were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2-51.7) million people (i.e. 43.8%; 95% CI: 25.3-64.8% of Ethiopia's national population) lived in areas environmentally suitable for the occurrence of podoconiosis. CONCLUSIONS Podoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale

    Prognostic Value of C-Reactive Protein in SARS-CoV-2 Infection: A Simplified Biomarker of COVID-19 Severity in Northern Ethiopia

    Get PDF
    Purpose To evaluate the role of C-reactive protein (CRP) in predicting severe COVID-19 patients. Methods A prospective observational cohort study was conducted from July 15 to October 28, 2020, at Kuyha COVID-19 isolation and treatment center hospital, Mekelle City, Northern Ethiopia. A total of 670 blood samples were collected serially. SARS-CoV-2 infection was confirmed by RT-PCR from nasopharyngeal swabs and CRP concentration was determined using Cobas Integra 400 Plus (Roche). Data were analyzed using STATA version 14. P-value < 0.05 was considered statistically significant. Results Overall, COVID-19 patients had significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0– 127.8) mg/L vs 0.9 (IQR: 0.5– 1.9) mg/L; p=0.0004)]. Those with severe COVID-19 clinical presentation had significantly higher median CRP levels compared to those with non-severe cases [166.1 (IQR: 48.6– 332.5) mg/L vs 2.4 (IQR: 1.2– 7.6) mg/L; p< 0.00001)]. Moreover, COVID-19 patients exhibited higher median CRP levels at baseline [58 (IQR: 2.0– 127.8) mg/L] that decreased significantly to 2.4 (IQR: 1.4– 3.9) mg/L after 40 days after symptom onset (p< 0.0001). Performance of CRP levels determined using ROC analysis distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73– 0.91; p=0.001; 77.4% sensitivity and 89.4% specificity). In multivariable analysis, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 for those who have higher ages and comorbidities (ARR 3.99, 95% CI: 1.35– 11.82; p=0.013). Conclusion CRP was found to be an independent determinant factor for severe COVID-19 patients. Therefore, CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes

    Longitudinal profile of antibody response to SARS-CoV-2 in patients with COVID-19 in a setting from Sub-Saharan Africa: A prospective longitudinal study.

    Get PDF
    BACKGROUND Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research
    • …
    corecore