109 research outputs found

    Microscopic Model for High-spin vs. Low-spin ground state in [Ni2M(CN)8][Ni_2{M(CN)_8]} (M=MoV,WV,NbIVM=Mo^V, W^V, Nb^{IV}) magnetic clusters

    Full text link
    Conventional superexchange rules predict ferromagnetic exchange interaction between Ni(II) and M (M=Mo(V), W(V), Nb(IV)). Recent experiments show that in some systems this superexchange is antiferromagnetic. To understand this feature, in this paper we develop a microscopic model for Ni(II)-M systems and solve it exactly using a valence bond approach. We identify the direct exchange coupling, the splitting of the magnetic orbitals and the inter-orbital electron repulsions, on the M site as the parameters which control the ground state spin of various clusters of the Ni(II)-M system. We present quantum phase diagrams which delineate the high-spin and low-spin ground states in the parameter space. We fit the spin gap to a spin Hamiltonian and extract the effective exchange constant within the experimentally observed range, for reasonable parameter values. We also find a region in the parameter space where an intermediate spin state is the ground state. These results indicate that the spin spectrum of the microscopic model cannot be reproduced by a simple Heisenberg exchange Hamiltonian.Comment: 8 pages including 7 figure

    Molecular and all solid DFT studies of the magnetic and chemical bonding properties within KM[Cr(CN)6_6] (M = V, Ni) complexes

    Full text link
    A study at both the molecular and extended solid level in the framework DFT is carried out for KM[Cr(CN)6_6] (M = V, Ni). From molecular calculations, the exchange parameters J are obtained, pointing to the expected magnetic ground states, i.e., antiferromagnetic for M = V with J = -296.5 cm−1^{-1} and ferromagnetic for M = Ni with J = +40.5 cm−1^{-1}. From solid state computations the same ground states and J magnitudes are confirmed from energy differences. Furthermore an analysis of the site projected density of states and of the chemical bonding is developed in which the cyanide ion linkage is analyzed addressing some isomerism aspects.Comment: new results, 5 tables, 7 fig

    Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    Get PDF
    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure

    Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Get PDF
    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures

    Framework solids based on copper(II) halides (Cl/Br) and methylene-bridged bis-(1-hydroxybenzotriazole): synthesis, crystal structures, magneto-structural correlation, and density functional theory (DFT) studies

    No full text
    A methylene-bridged 1-hydroxybenzotriazole derived ligand L [L = 1, 3-bis(benzotriazol-1-yl)-1,3-dioxapropane] has been synthesized and characterized by spectroscopic and structural methods. Reaction of L with two different copper(II) halides [CuX2; X = Br, Cl] in an identical condition yields two different compounds of similar compositions, {[Cu(μ-Br)(Br)(μ-L)]2}n·2nH2O (1) and {[Cu(μ-Cl)(Cl)(μ-L)]2}n·2nH2O (2), both being characterized by various physicochemical techniques. Single crystal X-ray studies reveal that they appear as 2D coordination polymers with similar bridging fashion of L. Low temperature magnetic susceptibility measurements reveal antiferromagnetic and ferromagnetic behaviors for 1 and 2 with magnetic coupling constants J = −15.2 and +1.7 cm–1, which are in a reasonable agreement with their calculated values (J = −9.79 and +0.68 cm–1 respectively, for 1 and 2). The role of bridging halides in the structure and magnetic properties of the complexes are investigated, and a possible magneto-structural correlation has been established. Influence of spin density of bridging halides on the magnitude of coupling constants has been discussed with the help of density functional theory (DFT) calculations

    Room-temperature molecule-based magnets

    No full text
    Room–temperature magnets belonging to the Prussian blue family were obtained recently through mild chemistry methods, i.e. molecular solution chemistry at room temperature and pressure. The paper describes the rational way followed to reach this goal and the prospects opened. First, the structure of Prussian blues and how it allows variation of the electronic structure and exchange interaction through the cyanide bridge is recalled. Then it is shown how the systematic use of orbital models and simple semiempirical calculations, combined with the Néel molecular field approach, helps in increasing the Curie temperature up to room temperature in vanadium–chromium derivatives. Some methods are then proposed to improve the magnetic properties and some examples of applications in demonstrators, devices, photomagnetism, etc, are given. Finally, we mention some exciting challenges in molecular magnetism, including the preparation of single molecule magnets at room temperature

    Effects of bedrest on deltoideus muscle morphology and enzymes

    Get PDF
    To examine the effects of unweighting on the structural and metabolic adaptations of a non-postural muscle, deltoideus muscle biopsies were taken in seven male healthy subjects, before and after a 37 day bedrest. Myofibrillar ATPase histochemistry demonstrated no change in fibre type distributions (I, IIA, IIB), in fibre cross-sectional areas nor in capillary supply. No difference was noted in enzyme activities of oxidative metabolism (citrate synthase, 3-hydroxy-acyl-CoA dehydrogenase), and glycolysis (hexokinase, lactate dehydrogenase). Electron microscopy showed a decrease in the volume density of lipids but no change in mitochondrial volume density and distribution. The results indicate that bedrest induces no major morphological and biochemical changes in deltoideus muscle, contrary to what was previously reported in vastus lateralis muscle. This lack of changes is probably related to an unaltered deltoideus muscle use
    • …
    corecore