995 research outputs found

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    Ecological adaptation of wild peach palm, its in situ conservation and deforestation-mediated extinction in Southern Brazilian Amazonia.

    Get PDF
    The Arc of Fire across southern Amazonia seasonally attracts worldwide attention as forests are cut and burned for agricultural expansion. These forests contain numerous wild relatives of native South American crops, such as peach palm

    Mechanisms of pulmonary fibrosis: role of activated myofibroblasts and NADPH oxidase

    Get PDF
    A common feature of pathological fibrosis involving the lung and other organs is the persistent activation of myofibroblasts in injured tissues. Recent evidence supports the role of a member of the NADPH oxidase (NOX) gene family, NOX4, in myofibroblast differentiation, matrix synthesis and contractility. Additionally, NOX4 may contribute directly or indirectly to alveolar epithelial cell death, while myofibroblasts themselves acquire an apoptosis-resistant phenotype. Thus, NOX4 may be responsible for the cardinal features of progressive fibrosis - myofibroblast activation and epithelial cell dysrepair. Therapeutic targeting of NOX4 is likely to be effective in progressive cases of fibrosis involving multiple organs

    Transglutaminase inhibition ameliorates experimental diabetic nephropathy

    Get PDF
    Diabetic nephropathy is characterized by excessive extracellular matrix accumulation resulting in renal scarring and end-stage renal disease. Previous studies have suggested that transglutaminase type 2, by formation of its protein crosslink product epsilon-(gamma-glutamyl)lysine, alters extracellular matrix homeostasis, causing basement membrane thickening and expansion of the mesangium and interstitium. To determine whether transglutaminase inhibition can slow the progression of chronic experimental diabetic nephropathy over an extended treatment period, the inhibitor NTU281 was given to uninephrectomized streptozotocin-induced diabetic rats for up to 8 months. Effective transglutaminase inhibition significantly reversed the increased serum creatinine and albuminuria in the diabetic rats. These improvements were accompanied by a fivefold decrease in glomerulosclerosis and a sixfold reduction in tubulointerstitial scarring. This was associated with reductions in collagen IV accumulation by 4 months, along with reductions in collagens I and III by 8 months. This inhibition also decreased the number of myofibroblasts, suggesting that tissue transglutaminase may play a role in myofibroblast transformation. Our study suggests that transglutaminase inhibition ameliorates the progression of experimental diabetic nephropathy and can be considered for clinical application

    Spatial Division Multiplexing for Multiplex Coherent Anti-Stokes Raman Scattering

    Full text link
    We demonstrate how a narrowband pump and a broadband spectrum can be spatially multiplexed by selective coupling them in two distinct modes of a few-mode microstructure fiber. The first mode carries most of the input pump energy, and experiences spectral broadening. Whereas the second mode preserves the narrow bandwidth of the remaining part of the pump. Bimodal propagation, with a power unbalance strongly in favor of the fundamental mode, is naturally obtained by maximizing coupling into the fundamental mode of the fiber. At the fiber output, the nearly monochromatic beam and the supercontinuum carried by the two different modes are combined by a microscope objective, and used as a pump and a Stokes wave for self-referenced multiplex coherent anti-Stokes Raman scattering micro-spectroscopy. The spectral resolution, the signal-to-noise-ratio, and the possible amplification of the remaining pump beam are discussed.Comment: 10 pages, 9 figure

    Transforming growth factor-β-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts

    Get PDF
    In the enhancer region of the human type I collagen alpha 2 (COL1A2) gene, we identified cis-elements for the transcription factor CUX1. However, the role of CUX1 in fibrosis remains unclear. Here we investigated the role of CUX1 in the regulation of COL1 expression and delineated the mechanisms underlying the regulation of COL1A2 expression by CUX1 in systemic sclerosis (SSc) lung fibroblasts. The binding of CUX1 to the COL1A2 enhancer region was assessed using electrophoretic mobility shift assays after treatment with transforming growth factor (TGF)-β. Subsequently, the protein expression levels of CUX1 isoforms were determined using Western blotting. Finally, the expression levels of COL1 and fibrosis-related cytokines, including CTGF, ET-1, Wnt1 and β-catenin were determined. The binding of CUX1 isoforms to the COL1A2 enhancer region increased after TGF-β treatment. TGF-β also increased the protein levels of the CUX1 isoforms p200, p150, p110, p75, p30 and p28. Moreover, SSc lung fibroblasts showed higher levels of CUX1 isoforms than normal lung fibroblasts, and treatment of SSc lung fibroblasts with a cathepsin L inhibitor (IW-CHO) decreased COL1 protein expression and reduced cell size, as measured using immunocytochemistry. In SSc and diffuse alveolar damage lung tissue sections, CUX1 localised within α-smooth muscle actin-positive cells. Our results suggested that CUX1 isoforms play vital roles in connective tissue deposition during wound repair and fibrosis

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Elevated Expression of Stromal Palladin Predicts Poor Clinical Outcome in Renal Cell Carcinoma

    Get PDF
    The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study

    Ecological adaptation of wild peach palm, its in situ conservation and deforestation-mediated extinction in Southern Brazilian Amazonia

    Get PDF
    Background: The Arc of Fire across southern Amazonia seasonally attracts worldwide attention as forests are cut and burned for agricultural expansion. These forests contain numerous wild relatives of native South American crops, such as peach palm. Methodology/Principal Findings: Our prospecting expeditions examined critical areas for wild peach palm in the Arc of Fire in Mato Grosso, Pará, Maranhão and Tocantins, as well as areas not previously examined in Amazonas and Amapá states. Recent digitization of the RADAM Brasil project permitted comparison among RADAM's parataxonomists' observations, previous botanical collections and our prospecting. Mapping on soils and vegetation types enabled us to hypothesize a set of ecological preferences. Wild peach palm is best adapted to Ultisols (Acrisols) in open forests across the Arc of Fire and westward into the more humid western Amazonia. Populations are generally small (fewer than 10 plants) on slopes above watercourses. In northern Mato Grosso and southern Pará soybean fields and pastures now occupy numerous areas where RADAM identified wild peach palm. The controversial BR-163 Highway is already eroding wild peach palm as deforestation expands. Conclusions/Significance: Many of these populations are now isolated by increasing forest fragmentation, which will lead to decreased reproduction via inbreeding depression and eventual extinction even without complete deforestation. Federal conservation areas are less numerous in the Arc of Fire than in other parts of Brazilian Amazonia, although there are indigenous lands; these conservation areas contain viable populations of wild peach palm and require better protection than they are currently receiving. Ex situ conservation of these populations is not viable given the relative lack of importance of domesticated peach palm and the difficulty of maintaining even economically interesting genetic resources. © 2009 Clement et al
    corecore