954 research outputs found

    Alignment and algebraically special tensors in Lorentzian geometry

    Full text link
    We develop a dimension-independent theory of alignment in Lorentzian geometry, and apply it to the tensor classification problem for the Weyl and Ricci tensors. First, we show that the alignment condition is equivalent to the PND equation. In 4D, this recovers the usual Petrov types. For higher dimensions, we prove that, in general, a Weyl tensor does not possess aligned directions. We then go on to describe a number of additional algebraic types for the various alignment configurations. For the case of second-order symmetric (Ricci) tensors, we perform the classification by considering the geometric properties of the corresponding alignment variety.Comment: 19 pages. Revised presentatio

    Archexplorer for automatic design space exploration

    Get PDF
    Growing architectural complexity and stringent time-to-market constraints suggest the need to move architecture design beyond parametric exploration to structural exploration. ArchExplorer is a Web-based permanent and open design-space exploration framework that lets researchers compare their designs against others. The authors demonstrate their approach by exploring the design space of an on-chip memory subsystem and a multicore processor.Postprint (published version

    Exploring the speed limits of liqui chromatography using shear-driven flows through 45 and 85 nm deep nano-channels

    Get PDF
    We explored the possibility to perform high speed and high efficiency liquid chromatographic separations in channels with a sub-100 nm depth. The mobile phase flow through these nano-channels was generated using the shear-driven flow principle to generate high speed flows which were the equivalent of a 12000 bar pressure-driven flow. It was found that the ultra-fast mass transfer kinetics prevailing in this range of small channel depths allow to drastically reduce the C-term contribution to band broadening, at least up to the upper speed limit of our current set-up (7 mm s−1 mobile phase velocity), leaving the inescapable molecular diffusion (i.e., B-term band broadening) as the sole detectable source of band broadening. Due to the greatly reduced mass transfer limitations, 50000 to 100000 theoretical plates could be generated in the span of 1 to 1.5 seconds. This is nearly two orders of magnitude faster than the best performing commercial pressure-driven UHPLC-systems. With the employed channel depths, we appear to have struck a practical lower limit for the channel miniaturization of shear-driven flows. Despite the use of channel substrates with the highest grades of optical flatness, the overall substrate waviness (on the order of some 5 to 10 nm) can no longer be neglected compared to the etched channel depth, which in turn significantly influenced the local retention factor and band broadening

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    The origin of the 1500-year climate cycles in Holocene North-Atlantic records

    Get PDF
    © 2007 Author(s) et al. This is an open-access article distributed under a Creative Commons License. The definitive version was published in Climate of the Past 3 (2007): 569-575, doi:10.5194/cp-3-569-2007Since the first suggestion of 1500-year cycles in the advance and retreat of glaciers (Denton and Karlen, 1973), many studies have uncovered evidence of repeated climate oscillations of 2500, 1500, and 1000 years. During last glacial period, natural climate cycles of 1500 years appear to be persistent (Bond and Lotti, 1995) and remarkably regular (Mayewski et al., 1997; Rahmstorf, 2003), yet the origin of this pacing during the Holocene remains a mystery (Rahmstorf, 2003), making it one of the outstanding puzzles of climate variability. Solar variability is often considered likely to be responsible for such cyclicities, but the evidence for solar forcing is difficult to evaluate within available data series due to the shortcomings of conventional time-series analyses. However, the wavelets analysis method is appropriate when considering non-stationary variability. Here we show by the use of wavelets analysis that it is possible to distinguish solar forcing of 1000- and 2500- year oscillations from oceanic forcing of 1500-year cycles. Using this method, the relative contribution of solar-related and ocean-related climate influences can be distinguished throughout the 10 000 yr Holocene intervals since the last ice age. These results reveal that the 1500-year climate cycles are linked with the oceanic circulation and not with variations in solar output as previously argued (Bond et al., 2001). In this light, previously studied marine sediment (Bianchi and McCave, 1999; Chapman and Shackleton, 2000; Giraudeau et al., 2000), ice core (O'Brien et al., 1995; Vonmoos et al., 2006) and dust records (Jackson et al., 2005) can be seen to contain the evidence of combined forcing mechanisms, whose relative influences varied during the course of the Holocene. Circum-Atlantic climate records cannot be explained exclusively by solar forcing, but require changes in ocean circulation, as suggested previously (Broecker et al., 2001; McManus et al., 1999).This work is supported by ANR project: “Integration des contraintes Paleoclimatiques pour reduire les Incertitudes sur l’evolution du Climat pendant les periodes Chaudes”- PICC (ANR-05-BLAN- 0312-02)

    Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation.

    Get PDF
    It has been shown that γδ T cells protect against the formation of squamous cell carcinoma (SCC) in several models. However, the role of γδ T cells in human papillomavirus (HPV)-associated uterine cervical SCC, the third-leading cause of death by cancer in women, is unknown. Here, we investigated the impact of γδ T cells in a transgenic mouse model of carcinogenesis induced by HPV16 oncoproteins. Surprisingly, γδ T cells promoted the development of HPV16 oncoprotein-induced lesions. HPV16 oncoproteins induced a decrease in epidermal Skint1 expression and the associated antitumor Vγ5 <sup>+</sup> γδ T cells, which were replaced by γδ T-cell subsets (mainly Vγ6 <sup>+</sup> γδ <sup>low</sup> CCR2 <sup>+</sup> CCR6 <sup>-</sup> ) actively producing IL-17A. Consistent with a proangiogenic role, γδ T cells promoted the formation of blood vessels in the dermis underlying the HPV-induced lesions. In human cervical biopsies, IL-17A <sup>+</sup> γδ T cells could only be observed at the cancer stage (SCC), where HPV oncoproteins are highly expressed, supporting the clinical relevance of our observations in mice. Overall, our results suggest that HPV16 oncoproteins induce a reorganization of the local epithelial-associated γδ T-cell subpopulations, thereby promoting angiogenesis and cancer development
    corecore