We develop a dimension-independent theory of alignment in Lorentzian
geometry, and apply it to the tensor classification problem for the Weyl and
Ricci tensors. First, we show that the alignment condition is equivalent to the
PND equation. In 4D, this recovers the usual Petrov types. For higher
dimensions, we prove that, in general, a Weyl tensor does not possess aligned
directions. We then go on to describe a number of additional algebraic types
for the various alignment configurations. For the case of second-order
symmetric (Ricci) tensors, we perform the classification by considering the
geometric properties of the corresponding alignment variety.Comment: 19 pages. Revised presentatio