313 research outputs found

    Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles

    Get PDF
    Achieving fairness and soundness in non-simultaneous rational secret sharing schemes has proved to be challenging. On the one hand, soundness can be ensured by providing side information related to the secret as a check, but on the other, this can be used by deviant players to compromise fairness. To overcome this, the idea of incorporating a time delay was suggested in the literature: in particular, time-delay encryption based on memory-bound functions has been put forth as a solution. In this paper, we propose a different approach to achieve such delay, namely using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO 2019, and construct a fair and sound rational secret sharing scheme in the non-simultaneous setting from HTLPs. HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows to restore fairness of the secret reconstruction phase, despite players having access to information related to the secret which is required to ensure soundness of the scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic so that players can compactly evaluate sub-shares. Without this efficiency improvement, players would have to independently solve each puzzle sent from the other players to obtain a share of the secret, which would be computationally inefficient. We argue that achieving both fairness and soundness in a non-simultaneous scheme using a time delay based on CPU-bound functions rather than memory-bound functions is more cost effective and realistic in relation to the implementation of the construction

    Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment

    Get PDF
    Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment. Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a convenient way to make class prediction with assessment of prediction confidence computed in each single patient's gene-expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters

    A critical evaluation of network and pathway based classifiers for outcome prediction in breast cancer

    Get PDF
    Recently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically constructed by aggregating the expression levels of several genes. The secondary data sources are employed to guide this aggregation. Although many studies claim that these approaches improve classification performance over single gene classifiers, the gain in performance is difficult to assess. This stems mainly from the fact that different breast cancer data sets and validation procedures are employed to assess the performance. Here we address these issues by employing a large cohort of six breast cancer data sets as benchmark set and by performing an unbiased evaluation of the classification accuracies of the different approaches. Contrary to previous claims, we find that composite feature classifiers do not outperform simple single gene classifiers. We investigate the effect of (1) the number of selected features; (2) the specific gene set from which features are selected; (3) the size of the training set and (4) the heterogeneity of the data set on the performance of composite feature and single gene classifiers. Strikingly, we find that randomization of secondary data sources, which destroys all biological information in these sources, does not result in a deterioration in performance of composite feature classifiers. Finally, we show that when a proper correction for gene set size is performed, the stability of single gene sets is similar to the stability of composite feature sets. Based on these results there is currently no reason to prefer prognostic classifiers based on composite features over single gene classifiers for predicting outcome in breast cancer

    Prognostic gene network modules in breast cancer hold promise

    Get PDF
    A substantial proportion of lymph node-negative patients who receive adjuvant chemotherapy do not derive any benefit from this aggressive and potentially toxic treatment. However, standard histopathological indices cannot reliably detect patients at low risk of relapse or distant metastasis. In the past few years several prognostic gene expression signatures have been developed and shown to potentially outperform histopathological factors in identifying low-risk patients in specific breast cancer subgroups with predictive values of around 90%, and therefore hold promise for clinical application. We envisage that further improvements and insights may come from integrative expression pathway analyses that dissect prognostic signatures into modules related to cancer hallmarks

    The prognostic significance of Cdc6 and Cdt1 in breast cancer

    Get PDF
    DNA replication is a critical step in cell proliferation. Overexpression of MCM2-7 genes correlated with poor prognosis in breast cancer patients. However, the roles of Cdc6 and Cdt1, which work with MCMs to regulate DNA replication, in breast cancers are largely unknown. In the present study, we have shown that the expression levels of Cdc6 and Cdt1 were both significantly correlated with an increasing number of MCM2-7 genes overexpression. Both Cdc6 and Cdt1, when expressed in a high level, alone or in combination, were significantly associated with poorer survival in the breast cancer patient cohort (n = 1441). In line with this finding, the expression of Cdc6 and Cdt1 was upregulated in breast cancer cells compared to normal breast epithelial cells. Expression of Cdc6 and Cdt1 was significantly higher in ER negative breast cancer, and was suppressed when ER signalling was inhibited either by tamoxifen in vitro or letrozole in human subjects. Importantly, breast cancer patients who responded to letrozole expressed significantly lower Cdc6 than those patients who did not respond. Our results suggest that Cdc6 is a potential prognostic marker and therapeutic target in breast cancer patients

    Intrinsic bias in breast cancer gene expression data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While global breast cancer gene expression data sets have considerable commonality in terms of their data content, the populations that they represent and the data collection methods utilized can be quite disparate. We sought to assess the extent and consequence of these systematic differences with respect to identifying clinically significant prognostic groups.</p> <p>Methods</p> <p>We ascertained how effectively unsupervised clustering employing randomly generated sets of genes could segregate tumors into prognostic groups using four well-characterized breast cancer data sets.</p> <p>Results</p> <p>Using a common set of 5,000 randomly generated lists (70 genes/list), the percentages of clusters with significant differences in metastasis latencies (HR p-value < 0.01) was 62%, 15%, 21% and 0% in the NKI2 (Netherlands Cancer Institute), Wang, TRANSBIG and KJX64/KJ125 data sets, respectively. Among ER positive tumors, the percentages were 38%, 11%, 4% and 0%, respectively. Few random lists were predictive among ER negative tumors in any data set. Clustering was associated with ER status and, after globally adjusting for the effects of ER-α gene expression, the percentages were 25%, 33%, 1% and 0%, respectively. The impact of adjusting for ER status depended on the extent of confounding between ER-α gene expression and markers of proliferation.</p> <p>Conclusion</p> <p>It is highly probable to identify a statistically significant association between a given gene list and prognosis in the NKI2 dataset due to its large sample size and the interrelationship between ER-α expression and markers of proliferation. In most respects, the TRANSBIG data set generated similar outcomes as the NKI2 data set, although its smaller sample size led to fewer statistically significant results.</p

    Stromal Genes Add Prognostic Information to Proliferation and Histoclinical Markers: A Basis for the Next Generation of Breast Cancer Gene Signatures

    Get PDF
    BACKGROUND: First-generation gene signatures that identify breast cancer patients at risk of recurrence are confined to estrogen-positive cases and are driven by genes involved in the cell cycle and proliferation. Previously we induced sets of stromal genes that are prognostic for both estrogen-positive and estrogen-negative samples. Creating risk-management tools that incorporate these stromal signatures, along with existing proliferation-based signatures and established clinicopathological measures such as lymph node status and tumor size, should better identify women at greatest risk for metastasis and death. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the strength and independence of the stromal and proliferation factors in estrogen-positive and estrogen-negative patients we constructed multivariate Cox proportional hazards models along with tree-based partitions of cancer cases for four breast cancer cohorts. Two sets of stromal genes, one consisting of DCN and FBLN1, and the other containing LAMA2, add substantial prognostic value to the proliferation signal and to clinical measures. For estrogen receptor-positive patients, the stromal-decorin set adds prognostic value independent of proliferation for three of the four datasets. For estrogen receptor-negative patients, the stromal-laminin set significantly adds prognostic value in two datasets, and marginally in a third. The stromal sets are most prognostic for the unselected population studies and may depend on the age distribution of the cohorts. CONCLUSION: The addition of stromal genes would measurably improve the performance of proliferation-based first-generation gene signatures, especially for older women. Incorporating indicators of the state of stromal cell types would mark a conceptual shift from epithelial-centric risk assessment to assessment based on the multiple cell types in the cancer-altered tissue

    Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers

    Get PDF
    Introduction: We examined if a combination of proliferation markers and estrogen receptor (ER) activity could predict early versus late relapses in ER-positive breast cancer and inform the choice and length of adjuvant endocrine therapy. Methods: Baseline affymetrix gene-expression profiles from ER-positive patients who received no systemic therapy (n = 559), adjuvant tamoxifen for 5 years (cohort-1: n = 683, cohort-2: n = 282) and from 58 patients treated with neoadjuvant letrozole for 3 months (gene-expression available at baseline, 14 and 90 days) were analyzed. A proliferation score based on the expression of mitotic kinases (MKS) and an ER-related score (ERS) adopted from Oncotype DX® were calculated. The same analysis was performed using the Genomic Grade Index as proliferation marker and the luminal gene score from the PAM50 classifier as measure of estrogen-related genes. Median values were used to define low and high marker groups and four combinations were created. Relapses were grouped into time cohorts of 0-2.5, 0-5, 5-10 years. Results: In the overall 10 years period, the proportional hazards assumption was violated for several biomarker groups indicating time-dependent effects. In tamoxifen-treated patients Low-MKS/Low-ERS cancers had continuously increasing risk of relapse that was higher after 5 years than Low-MKS/High-ERS cancers [0 to 10 year, HR 3.36; p = 0.013]. High-MKS/High-ERS cancers had low risk of early relapse [0-2.5 years HR 0.13; p = 0.0006], but high risk of late relapse which was higher than in the High-MKS/Low-ERS group [after 5 years HR 3.86; p = 0.007]. The High-MKS/Low-ERS subset had most of the early relapses [0 to 2.5 years, HR 6.53; p < 0.0001] especially in node negative tumors and showed minimal response to neoadjuvant letrozole. These findings were qualitatively confirmed in a smaller independent cohort of tamoxifen-treated patients. Using different biomarkers provided similar results. Conclusions: Early relapses are highest in highly proliferative/low-ERS cancers, in particular in node negative tumors. Relapses occurring after 5 years of adjuvant tamoxifen are highest among the highly-proliferative/high-ERS tumors although their risk of recurrence is modest in the first 5 years on tamoxifen. These tumors could be the best candidates for extended endocrine therapy

    Minimising Immunohistochemical False Negative ER Classification Using a Complementary 23 Gene Expression Signature of ER Status

    Get PDF
    BACKGROUND: Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy. Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast cancers who should be offered endocrine therapies in order to improve clinical outcome. In routine oncological practice ER status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which the ER expression level is compared to an empirical threshold. The clinical relevance of gene expression-based ER subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the frequency of false negative ER status classification using two gene expression approaches and compare these methods to IHC based ER status in terms of predictive and prognostic concordance with clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, ER status was discriminated by fitting the bimodal expression of ESR1 to a mixed Gaussian model. The discriminative power of ESR1 suggested bimodal expression as an efficient way to stratify breast cancer; therefore we identified a set of genes whose expression was both strongly bimodal, mimicking ESR expression status, and highly expressed in breast epithelial cell lines, to derive a 23-gene ER expression signature-based classifier. We assessed our classifiers in seven published breast cancer cohorts by comparing the gene expression-based ER status to IHC-based ER status as a predictor of clinical outcome in both untreated and tamoxifen treated cohorts. In untreated breast cancer cohorts, the 23 gene signature-based ER status provided significantly improved prognostic power compared to IHC-based ER status (P = 0.006). In tamoxifen-treated cohorts, the 23 gene ER expression signature predicted clinical outcome (HR = 2.20, P = 0.00035). These complementary ER signature-based strategies estimated that between 15.1% and 21.8% patients of IHC-based negative ER status would be classified with ER positive breast cancer. CONCLUSION/SIGNIFICANCE: Expression-based ER status classification may complement IHC to minimise false negative ER status classification and optimise patient stratification for endocrine therapies

    Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer

    Get PDF
    Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER-) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER- breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of the IRF7/IFN-beta/IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4(+)/CD8(+) T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-beta production. Presence of IFN-beta in the circulation of ER- breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival. These findings establish chemotherapy-induced immunological dormancy in ER- breast cancer as a novel concept for (neo)adjuvant chemotherapy activity, and implicate sustained activation of the IRF7/IFN-beta/IFNAR pathway in this effect. Further, IFN-beta emerges as a potential predictive biomarker and therapeutic molecule to improve outcome of ER- breast cancer patients treated with (neo)adjuvant chemotherapy.Peer reviewe
    corecore